等离子体驱动的分子裂变

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2024-11-20 DOI:10.1515/nanoph-2024-0417
Hui Wang
{"title":"等离子体驱动的分子裂变","authors":"Hui Wang","doi":"10.1515/nanoph-2024-0417","DOIUrl":null,"url":null,"abstract":"Plasmon-driven photocatalysis offers a unique means of leveraging nanoscale light–matter interactions to convert photon energy into chemical energy in a chemoselective and regioselective manner under mild reaction conditions. Plasmon-driven bond cleavage in molecular adsorbates represents a critical step in virtually all plasmon-mediated photocatalytic reactions and has been identified as the rate-determining step in many cases. This review article summarizes critical insights concerning plasmon-triggered bond-cleaving mechanisms gained through combined experimental and computational efforts over the past decade or so, elaborating on how the plasmon-derived physiochemical effects, metal–adsorbate interactions, and local chemical environments profoundly influence chemoselective bond-cleaving processes in a diverse set of molecular adsorbates ranging from small diatomic molecules to aliphatic and aromatic organic compounds. As demonstrated by several noteworthy examples, insights gained from fundamental mechanistic studies lay a critical knowledge foundation guiding rational design of nanoparticle–adsorbate systems with desired plasmonic molecule-scissoring functions for targeted applications, such as controlled release of molecular cargos, surface coating of solid-state materials, and selective bond activation for polymerization reactions.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"3 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmon-driven molecular scission\",\"authors\":\"Hui Wang\",\"doi\":\"10.1515/nanoph-2024-0417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasmon-driven photocatalysis offers a unique means of leveraging nanoscale light–matter interactions to convert photon energy into chemical energy in a chemoselective and regioselective manner under mild reaction conditions. Plasmon-driven bond cleavage in molecular adsorbates represents a critical step in virtually all plasmon-mediated photocatalytic reactions and has been identified as the rate-determining step in many cases. This review article summarizes critical insights concerning plasmon-triggered bond-cleaving mechanisms gained through combined experimental and computational efforts over the past decade or so, elaborating on how the plasmon-derived physiochemical effects, metal–adsorbate interactions, and local chemical environments profoundly influence chemoselective bond-cleaving processes in a diverse set of molecular adsorbates ranging from small diatomic molecules to aliphatic and aromatic organic compounds. As demonstrated by several noteworthy examples, insights gained from fundamental mechanistic studies lay a critical knowledge foundation guiding rational design of nanoparticle–adsorbate systems with desired plasmonic molecule-scissoring functions for targeted applications, such as controlled release of molecular cargos, surface coating of solid-state materials, and selective bond activation for polymerization reactions.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0417\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0417","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

等离子体驱动光催化技术提供了一种独特的方法,利用纳米级光-物质相互作用,在温和的反应条件下,以化学选择性和区域选择性的方式将光子能量转化为化学能。在几乎所有等离子体介导的光催化反应中,分子吸附剂中等离子体驱动的键裂解是一个关键步骤,在许多情况下已被确定为速率决定步骤。这篇综述文章总结了过去十多年来通过实验和计算的综合努力所获得的有关等离子体触发的键裂解机制的重要见解,详细阐述了等离子体产生的物理化学效应、金属-吸附剂相互作用以及局部化学环境如何深刻影响从小双核分子到脂肪族和芳香族有机化合物等各种分子吸附剂中的化学选择性键裂解过程。正如几个值得注意的例子所证明的那样,从基本机理研究中获得的见解奠定了重要的知识基础,可指导合理设计纳米粒子-吸附剂系统,使其具有所需的质子分子裂解功能,用于分子载体的控制释放、固态材料的表面涂层以及聚合反应的选择性键活化等目标应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasmon-driven molecular scission
Plasmon-driven photocatalysis offers a unique means of leveraging nanoscale light–matter interactions to convert photon energy into chemical energy in a chemoselective and regioselective manner under mild reaction conditions. Plasmon-driven bond cleavage in molecular adsorbates represents a critical step in virtually all plasmon-mediated photocatalytic reactions and has been identified as the rate-determining step in many cases. This review article summarizes critical insights concerning plasmon-triggered bond-cleaving mechanisms gained through combined experimental and computational efforts over the past decade or so, elaborating on how the plasmon-derived physiochemical effects, metal–adsorbate interactions, and local chemical environments profoundly influence chemoselective bond-cleaving processes in a diverse set of molecular adsorbates ranging from small diatomic molecules to aliphatic and aromatic organic compounds. As demonstrated by several noteworthy examples, insights gained from fundamental mechanistic studies lay a critical knowledge foundation guiding rational design of nanoparticle–adsorbate systems with desired plasmonic molecule-scissoring functions for targeted applications, such as controlled release of molecular cargos, surface coating of solid-state materials, and selective bond activation for polymerization reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
Impact of temperature on the brightening of neutral and charged dark excitons in WSe2 monolayer An overview on plasmon-enhanced photoluminescence via metallic nanoantennas Plasmon-driven molecular scission Enhanced zero-phonon line emission from an ensemble of W centers in circular and bowtie Bragg grating cavities Optimization of NC-LSPR coupled MoS2 phototransistors for high-performance broad-spectrum detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1