Yan Shaoqi;Wei Xie;Li Jinding;Long Teng;Xiaoling Zhang;Qingduan Meng;Chi Zhang;Jia Wang;Chunguang Li;Yun Wu;Xu Wang;Liang Sun
{"title":"基于多模谐振器共耦合的高温超导三合一器","authors":"Yan Shaoqi;Wei Xie;Li Jinding;Long Teng;Xiaoling Zhang;Qingduan Meng;Chi Zhang;Jia Wang;Chunguang Li;Yun Wu;Xu Wang;Liang Sun","doi":"10.1109/TASC.2024.3492545","DOIUrl":null,"url":null,"abstract":"This article presents a miniaturized C-band high-temperature superconducting triplexer. The triplexer is composed of multimode resonators and adopts the co-coupling structure to reduce its size. Furthermore, the co-coupling structure voids designing the impedance matching structure of triplexers adopting branch line structures and improves the design efficiency of triplexers. Besides, the isolation of the triplexer has been effectively improved by adjusting the coupling between resonators without increasing its size. The measured results show that the center frequencies of the triplexer are 5.503, 6.002, and 6.500 GHz, with relative bandwidths of 1.113%, 1.155%, and 1.115%, respectively. The insertion losses are 0.53, 0.28, and 0.37 dB, respectively. The isolations between channels are larger than 33.9 dB. The adopted approaches benefit to design miniaturized triplexers with high performance.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 1","pages":"1-7"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Temperature Superconducting Triplexer Based on Co-Coupling of Multimode Resonators\",\"authors\":\"Yan Shaoqi;Wei Xie;Li Jinding;Long Teng;Xiaoling Zhang;Qingduan Meng;Chi Zhang;Jia Wang;Chunguang Li;Yun Wu;Xu Wang;Liang Sun\",\"doi\":\"10.1109/TASC.2024.3492545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a miniaturized C-band high-temperature superconducting triplexer. The triplexer is composed of multimode resonators and adopts the co-coupling structure to reduce its size. Furthermore, the co-coupling structure voids designing the impedance matching structure of triplexers adopting branch line structures and improves the design efficiency of triplexers. Besides, the isolation of the triplexer has been effectively improved by adjusting the coupling between resonators without increasing its size. The measured results show that the center frequencies of the triplexer are 5.503, 6.002, and 6.500 GHz, with relative bandwidths of 1.113%, 1.155%, and 1.115%, respectively. The insertion losses are 0.53, 0.28, and 0.37 dB, respectively. The isolations between channels are larger than 33.9 dB. The adopted approaches benefit to design miniaturized triplexers with high performance.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"35 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745642/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10745642/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A High-Temperature Superconducting Triplexer Based on Co-Coupling of Multimode Resonators
This article presents a miniaturized C-band high-temperature superconducting triplexer. The triplexer is composed of multimode resonators and adopts the co-coupling structure to reduce its size. Furthermore, the co-coupling structure voids designing the impedance matching structure of triplexers adopting branch line structures and improves the design efficiency of triplexers. Besides, the isolation of the triplexer has been effectively improved by adjusting the coupling between resonators without increasing its size. The measured results show that the center frequencies of the triplexer are 5.503, 6.002, and 6.500 GHz, with relative bandwidths of 1.113%, 1.155%, and 1.115%, respectively. The insertion losses are 0.53, 0.28, and 0.37 dB, respectively. The isolations between channels are larger than 33.9 dB. The adopted approaches benefit to design miniaturized triplexers with high performance.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.