Khadija Sadraoui, Touayba Ahl El Haj, Khalid El Mejdoubi, Ahmed El Yacoubi, Youssef Elrhayam, Mohamed Berradi, Brahim Chafik El Idrissi, Hassan Chaair, Brahim Sallek
{"title":"使用高效异相催化剂合成喹喔啉的动力学、热力学和响应面方法优化研究:环境可持续性指标评估","authors":"Khadija Sadraoui, Touayba Ahl El Haj, Khalid El Mejdoubi, Ahmed El Yacoubi, Youssef Elrhayam, Mohamed Berradi, Brahim Chafik El Idrissi, Hassan Chaair, Brahim Sallek","doi":"10.1007/s11164-024-05410-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a Box–Behnken design was employed to optimize the synthesis of quinoxaline derivatives via the condensation of benzil or furyl with 1,2-diamines using zirconium phosphate (ZrP) as a heterogeneous catalyst and water as a green solvent. The effects of reaction temperature (40–50 °C), catalyst amount (0.02–0.04 g), and stirring time (5–15 min) were investigated. The model exhibited excellent predictive accuracy with an adjusted R<sup>2</sup> of 0.997, yielding 97.90% quinoxalines under optimal conditions: 0.03 g catalyst, 12 min reaction time, and 45 °C. Catalyst reusability was confirmed for up to five cycles, with a slight decrease in yield (~ 90% after five uses). Kinetic analysis revealed first-order reaction kinetics with an activation energy of 70.34 kJ/mol. Thermodynamic parameters, including ΔS, ΔH, and ΔG, were calculated using the Eyring-Polanyi equation. A sustainability assessment using green metrics, such as atom economy (AE), reaction mass efficiency (RME), and the E-factor, demonstrated the improved environmental profile of the process. This method offers a greener and efficient approach for quinoxaline synthesis, with potential applications in the pharmaceutical and fine chemical industries.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 12","pages":"5799 - 5821"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics, thermodynamics, and optimization studies using response surface methodology in quinoxalines synthesis with efficient heterogeneous catalysts: environmental sustainability metrics assessment\",\"authors\":\"Khadija Sadraoui, Touayba Ahl El Haj, Khalid El Mejdoubi, Ahmed El Yacoubi, Youssef Elrhayam, Mohamed Berradi, Brahim Chafik El Idrissi, Hassan Chaair, Brahim Sallek\",\"doi\":\"10.1007/s11164-024-05410-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a Box–Behnken design was employed to optimize the synthesis of quinoxaline derivatives via the condensation of benzil or furyl with 1,2-diamines using zirconium phosphate (ZrP) as a heterogeneous catalyst and water as a green solvent. The effects of reaction temperature (40–50 °C), catalyst amount (0.02–0.04 g), and stirring time (5–15 min) were investigated. The model exhibited excellent predictive accuracy with an adjusted R<sup>2</sup> of 0.997, yielding 97.90% quinoxalines under optimal conditions: 0.03 g catalyst, 12 min reaction time, and 45 °C. Catalyst reusability was confirmed for up to five cycles, with a slight decrease in yield (~ 90% after five uses). Kinetic analysis revealed first-order reaction kinetics with an activation energy of 70.34 kJ/mol. Thermodynamic parameters, including ΔS, ΔH, and ΔG, were calculated using the Eyring-Polanyi equation. A sustainability assessment using green metrics, such as atom economy (AE), reaction mass efficiency (RME), and the E-factor, demonstrated the improved environmental profile of the process. This method offers a greener and efficient approach for quinoxaline synthesis, with potential applications in the pharmaceutical and fine chemical industries.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":753,\"journal\":{\"name\":\"Research on Chemical Intermediates\",\"volume\":\"50 12\",\"pages\":\"5799 - 5821\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research on Chemical Intermediates\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11164-024-05410-6\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05410-6","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Kinetics, thermodynamics, and optimization studies using response surface methodology in quinoxalines synthesis with efficient heterogeneous catalysts: environmental sustainability metrics assessment
In this study, a Box–Behnken design was employed to optimize the synthesis of quinoxaline derivatives via the condensation of benzil or furyl with 1,2-diamines using zirconium phosphate (ZrP) as a heterogeneous catalyst and water as a green solvent. The effects of reaction temperature (40–50 °C), catalyst amount (0.02–0.04 g), and stirring time (5–15 min) were investigated. The model exhibited excellent predictive accuracy with an adjusted R2 of 0.997, yielding 97.90% quinoxalines under optimal conditions: 0.03 g catalyst, 12 min reaction time, and 45 °C. Catalyst reusability was confirmed for up to five cycles, with a slight decrease in yield (~ 90% after five uses). Kinetic analysis revealed first-order reaction kinetics with an activation energy of 70.34 kJ/mol. Thermodynamic parameters, including ΔS, ΔH, and ΔG, were calculated using the Eyring-Polanyi equation. A sustainability assessment using green metrics, such as atom economy (AE), reaction mass efficiency (RME), and the E-factor, demonstrated the improved environmental profile of the process. This method offers a greener and efficient approach for quinoxaline synthesis, with potential applications in the pharmaceutical and fine chemical industries.
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.