脉冲激光加热诱导的广义热声弹性波与双温理论

IF 2.2 3区 工程技术 Q2 MECHANICS Archive of Applied Mechanics Pub Date : 2024-11-21 DOI:10.1007/s00419-024-02721-3
M. Raddadi, M. S. Mohamed, A. M. S. Mahdy, A. A. El-Bary, Kh. Lotfy
{"title":"脉冲激光加热诱导的广义热声弹性波与双温理论","authors":"M. Raddadi,&nbsp;M. S. Mohamed,&nbsp;A. M. S. Mahdy,&nbsp;A. A. El-Bary,&nbsp;Kh. Lotfy","doi":"10.1007/s00419-024-02721-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the two-dimensional deformations within the framework of the two-temperature thermoelasticity theory, focusing on the interplay between laser pulse heating, acoustic pressure, and the resultant elastic material response. Our exploration is centered on the understanding of how acoustic waves, generated by laser pulses, influence the thermoelastic and mechanical behavior of materials. The role of acoustic pressure in modulating the thermoelastic response during laser pulse heating is investigated. Theoretical formulations are developed to describe the coupled evolution of temperature and deformation fields in the two-dimensional (2D) space. Employing normal mode analysis, the exact solutions of the main variations (wave propagation) of physical fields are obtained. Some boundary conditions are utilized for more accurate numerical simulations. The numerical results are discussed theoretically and the wave propagation of the physical quantities under study is represented graphically. The results obtained from this study have significant implications for various applications, including laser material processing, biomedical procedures, and non-destructive testing.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulsed laser heating-induced generalized thermo-acoustic-elastic waves with two-temperature theory\",\"authors\":\"M. Raddadi,&nbsp;M. S. Mohamed,&nbsp;A. M. S. Mahdy,&nbsp;A. A. El-Bary,&nbsp;Kh. Lotfy\",\"doi\":\"10.1007/s00419-024-02721-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the two-dimensional deformations within the framework of the two-temperature thermoelasticity theory, focusing on the interplay between laser pulse heating, acoustic pressure, and the resultant elastic material response. Our exploration is centered on the understanding of how acoustic waves, generated by laser pulses, influence the thermoelastic and mechanical behavior of materials. The role of acoustic pressure in modulating the thermoelastic response during laser pulse heating is investigated. Theoretical formulations are developed to describe the coupled evolution of temperature and deformation fields in the two-dimensional (2D) space. Employing normal mode analysis, the exact solutions of the main variations (wave propagation) of physical fields are obtained. Some boundary conditions are utilized for more accurate numerical simulations. The numerical results are discussed theoretically and the wave propagation of the physical quantities under study is represented graphically. The results obtained from this study have significant implications for various applications, including laser material processing, biomedical procedures, and non-destructive testing.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02721-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02721-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究在双温热弹性理论的框架内研究了二维变形,重点是激光脉冲加热、声压和由此产生的弹性材料响应之间的相互作用。我们的研究重点是了解激光脉冲产生的声波如何影响材料的热弹性和机械行为。我们研究了声压在激光脉冲加热过程中调节热弹性响应的作用。研究开发了理论公式来描述二维(2D)空间中温度场和变形场的耦合演变。利用法模分析,获得了物理场主要变化(波的传播)的精确解。利用一些边界条件进行了更精确的数值模拟。对数值结果进行了理论讨论,并用图形表示了所研究物理量的波传播。本研究获得的结果对激光材料加工、生物医学程序和无损检测等各种应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulsed laser heating-induced generalized thermo-acoustic-elastic waves with two-temperature theory

This study investigates the two-dimensional deformations within the framework of the two-temperature thermoelasticity theory, focusing on the interplay between laser pulse heating, acoustic pressure, and the resultant elastic material response. Our exploration is centered on the understanding of how acoustic waves, generated by laser pulses, influence the thermoelastic and mechanical behavior of materials. The role of acoustic pressure in modulating the thermoelastic response during laser pulse heating is investigated. Theoretical formulations are developed to describe the coupled evolution of temperature and deformation fields in the two-dimensional (2D) space. Employing normal mode analysis, the exact solutions of the main variations (wave propagation) of physical fields are obtained. Some boundary conditions are utilized for more accurate numerical simulations. The numerical results are discussed theoretically and the wave propagation of the physical quantities under study is represented graphically. The results obtained from this study have significant implications for various applications, including laser material processing, biomedical procedures, and non-destructive testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
期刊最新文献
Variable-thickness higher-order sandwich beams with FG cellular core and CNT-RC patches: vibrational analysis in thermal environment Pulsed laser heating-induced generalized thermo-acoustic-elastic waves with two-temperature theory Dynamic response of a half-space with time-fractional heat conduction and nonlocal strain theory Rapid heating of FGM plates resting on elastic foundation Large deformation modeling of flexible piezoelectric materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1