{"title":"地质多孔介质中微生物诱导碳酸盐沉淀的控制因素。","authors":"Shunxiang Xia, Wen Song","doi":"10.1016/j.scitotenv.2024.177647","DOIUrl":null,"url":null,"abstract":"<p><p>Microbially-induced carbonate precipitation (MICP) provides a natural biomineralization approach to secure the geologic storage of gases (e.g., carbon dioxide, hydrogen and methane). Cracks in embrittled wellbore cement, for example, provide a pathway for atmospheric gas leakage, while permeability heterogeneities in the storage reservoir leads to fingering effects that diminish the storage capacity. The design of MICP processes, however, remains a challenge due to limited understanding of the coupled nonlinear reaction kinetics and multiphase transport involved. Specifically, previous attempts at MICP through porous media have been encumbered by carbonate precipitation localized to the first ∼ cm of the bulk injection surface. In this study, we investigate the reactive transport controls on MICP necessary to enable deep MICP penetration into the formation. We use a micromodel with pore geometry and geochemistry representative of real geologic media to image direct pore- and pore-ensemble-level mineral, fluid, and microbial distributions. An approach to adsorb microbes uniformly across the micromodel, rather than local accumulation near the inlet, is developed that enables deep MICP penetration into the porous medium. A sensitivity analysis was performed to investigate the impact of injection conditions (e.g., rates, concentrations) required to maximize CaCO<sub>3</sub> precipitation away from the injection site. With multiple cycles of MICP, a ∼ 78 % reduction in permeability was achieved with ∼8 % carbonate pore volume occupation. Overall, this study establishes the possibility of MICP as an effective and controllable method to enhance the security of gas storage in geologic media.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177647"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controls on microbially-induced carbonate precipitation in geologic porous media.\",\"authors\":\"Shunxiang Xia, Wen Song\",\"doi\":\"10.1016/j.scitotenv.2024.177647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbially-induced carbonate precipitation (MICP) provides a natural biomineralization approach to secure the geologic storage of gases (e.g., carbon dioxide, hydrogen and methane). Cracks in embrittled wellbore cement, for example, provide a pathway for atmospheric gas leakage, while permeability heterogeneities in the storage reservoir leads to fingering effects that diminish the storage capacity. The design of MICP processes, however, remains a challenge due to limited understanding of the coupled nonlinear reaction kinetics and multiphase transport involved. Specifically, previous attempts at MICP through porous media have been encumbered by carbonate precipitation localized to the first ∼ cm of the bulk injection surface. In this study, we investigate the reactive transport controls on MICP necessary to enable deep MICP penetration into the formation. We use a micromodel with pore geometry and geochemistry representative of real geologic media to image direct pore- and pore-ensemble-level mineral, fluid, and microbial distributions. An approach to adsorb microbes uniformly across the micromodel, rather than local accumulation near the inlet, is developed that enables deep MICP penetration into the porous medium. A sensitivity analysis was performed to investigate the impact of injection conditions (e.g., rates, concentrations) required to maximize CaCO<sub>3</sub> precipitation away from the injection site. With multiple cycles of MICP, a ∼ 78 % reduction in permeability was achieved with ∼8 % carbonate pore volume occupation. Overall, this study establishes the possibility of MICP as an effective and controllable method to enhance the security of gas storage in geologic media.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177647\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177647\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177647","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Controls on microbially-induced carbonate precipitation in geologic porous media.
Microbially-induced carbonate precipitation (MICP) provides a natural biomineralization approach to secure the geologic storage of gases (e.g., carbon dioxide, hydrogen and methane). Cracks in embrittled wellbore cement, for example, provide a pathway for atmospheric gas leakage, while permeability heterogeneities in the storage reservoir leads to fingering effects that diminish the storage capacity. The design of MICP processes, however, remains a challenge due to limited understanding of the coupled nonlinear reaction kinetics and multiphase transport involved. Specifically, previous attempts at MICP through porous media have been encumbered by carbonate precipitation localized to the first ∼ cm of the bulk injection surface. In this study, we investigate the reactive transport controls on MICP necessary to enable deep MICP penetration into the formation. We use a micromodel with pore geometry and geochemistry representative of real geologic media to image direct pore- and pore-ensemble-level mineral, fluid, and microbial distributions. An approach to adsorb microbes uniformly across the micromodel, rather than local accumulation near the inlet, is developed that enables deep MICP penetration into the porous medium. A sensitivity analysis was performed to investigate the impact of injection conditions (e.g., rates, concentrations) required to maximize CaCO3 precipitation away from the injection site. With multiple cycles of MICP, a ∼ 78 % reduction in permeability was achieved with ∼8 % carbonate pore volume occupation. Overall, this study establishes the possibility of MICP as an effective and controllable method to enhance the security of gas storage in geologic media.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.