真菌 GPCR 感知宿主和环境线索。

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-11-19 DOI:10.1016/j.pbi.2024.102667
Cong Jiang , Aliang Xia , Daiying Xu , Jin-Rong Xu
{"title":"真菌 GPCR 感知宿主和环境线索。","authors":"Cong Jiang ,&nbsp;Aliang Xia ,&nbsp;Daiying Xu ,&nbsp;Jin-Rong Xu","doi":"10.1016/j.pbi.2024.102667","DOIUrl":null,"url":null,"abstract":"<div><div>G protein-coupled receptors (GPCRs) represent the largest superfamily of cell surface membrane receptors in eukaryotes. Unlike plants, fungi do not have receptor kinases or receptor-like kinases. Instead, GPCRs play critical roles in fungi to sense signals crucial for their survival and interspecies interactions to activate downstream cAMP and mitogen-activated protein kinase pathways via heterotrimeric G proteins. Some fungal GPCRs have relatively conserved roles in nutrient sensing and pheromone recognition to facilitate growth and sexual reproduction. For fungal pathogens with expanded families of classical or fungal-specific GPCRs, including those with the CFEM (common in fungal extracellular membrane) domain, distinctive GPCRs are involved in recognizing different signals from their hosts and surroundings. Although only a few ligands recognized by fungal GPCRs have been identified, recent studies have advanced our knowledge of GPCR biology in plant pathogenic and nematode-trapping fungi.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102667"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing host and environmental cues by fungal GPCRs\",\"authors\":\"Cong Jiang ,&nbsp;Aliang Xia ,&nbsp;Daiying Xu ,&nbsp;Jin-Rong Xu\",\"doi\":\"10.1016/j.pbi.2024.102667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>G protein-coupled receptors (GPCRs) represent the largest superfamily of cell surface membrane receptors in eukaryotes. Unlike plants, fungi do not have receptor kinases or receptor-like kinases. Instead, GPCRs play critical roles in fungi to sense signals crucial for their survival and interspecies interactions to activate downstream cAMP and mitogen-activated protein kinase pathways via heterotrimeric G proteins. Some fungal GPCRs have relatively conserved roles in nutrient sensing and pheromone recognition to facilitate growth and sexual reproduction. For fungal pathogens with expanded families of classical or fungal-specific GPCRs, including those with the CFEM (common in fungal extracellular membrane) domain, distinctive GPCRs are involved in recognizing different signals from their hosts and surroundings. Although only a few ligands recognized by fungal GPCRs have been identified, recent studies have advanced our knowledge of GPCR biology in plant pathogenic and nematode-trapping fungi.</div></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"82 \",\"pages\":\"Article 102667\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001584\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001584","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

G 蛋白偶联受体(GPCR)是真核生物中最大的细胞表面膜受体超家族。与植物不同,真菌没有受体激酶或类似受体的激酶。相反,GPCR 在真菌中发挥着关键作用,它们能感知对真菌生存和种间相互作用至关重要的信号,并通过异三聚 G 蛋白激活下游 cAMP 和有丝分裂原激活蛋白激酶通路。一些真菌 GPCR 在营养传感和信息素识别方面具有相对保守的作用,可促进生长和有性生殖。对于经典或真菌特异性 GPCR 家族扩大的真菌病原体,包括具有 CFEM(真菌胞外膜常见)结构域的真菌病原体,独特的 GPCR 参与识别来自宿主和周围环境的不同信号。虽然真菌 GPCR 识别的配体为数不多,但最近的研究增进了我们对植物致病真菌和线虫诱捕真菌 GPCR 生物学的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensing host and environmental cues by fungal GPCRs
G protein-coupled receptors (GPCRs) represent the largest superfamily of cell surface membrane receptors in eukaryotes. Unlike plants, fungi do not have receptor kinases or receptor-like kinases. Instead, GPCRs play critical roles in fungi to sense signals crucial for their survival and interspecies interactions to activate downstream cAMP and mitogen-activated protein kinase pathways via heterotrimeric G proteins. Some fungal GPCRs have relatively conserved roles in nutrient sensing and pheromone recognition to facilitate growth and sexual reproduction. For fungal pathogens with expanded families of classical or fungal-specific GPCRs, including those with the CFEM (common in fungal extracellular membrane) domain, distinctive GPCRs are involved in recognizing different signals from their hosts and surroundings. Although only a few ligands recognized by fungal GPCRs have been identified, recent studies have advanced our knowledge of GPCR biology in plant pathogenic and nematode-trapping fungi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Plant growth and development: Experimental diversity is essential for dissecting plant diversity. Detecting novel plant pathogen threats to food system security by integrating the Plant Reactome and remote sensing. Messenger and message: Uncovering the roles, rhythm and regulation of extracellular vesicles in plant biotic interactions. Chromatin dynamics and epigenetic regulation in plant development and environmental responses. Editorial overview: Spatial and temporal regulation of molecular and cell biological process across biological scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1