Shan Zhang, Le Chen, Linchi Niu, Haibo Yuan, Xujiang Shan, Qianting Zhang, Yuning Feng, Qinghua Zhou, Yongwen Jiang, Jia Li
{"title":"综合脂质组学和挥发物组学揭示红茶加工过程中脂质在香气形成中的作用的新见解。","authors":"Shan Zhang, Le Chen, Linchi Niu, Haibo Yuan, Xujiang Shan, Qianting Zhang, Yuning Feng, Qinghua Zhou, Yongwen Jiang, Jia Li","doi":"10.1016/j.crfs.2024.100910","DOIUrl":null,"url":null,"abstract":"<p><p>Lipids are important tea aroma precursors. Due to the complexity of black tea processing involving both enzymatic and thermal reactions, the role of lipids in black tea aroma formation remained unclear. Herein, the dynamic changes of lipids and volatiles during black tea processing were simultaneously analyzed by lipidomics and volatolomics using ultra-high-performance liquid chromatography coupled to Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive) and gas chromatography-tandem mass spectrometry (GC-MS/MS). The lipidomics method was validated in linearity, reproducibility, and recovery, which showed a high reliability. A total of 374 lipids and 88 volatiles were detected. Among them, 362 lipids and 29 fatty acid-derived volatiles (FADVs) were significantly altered depending on different processing stages. During the enzyme-driven stages of black tea processing (withering, rolling and fermentation), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were largely downregulated (<0.33 folds). Instead, in the non-enzymatic drying steps of black tea processing, triacylglycerol (TG), diacylglycerol (DG), and phosphatidic acid (PA) were mainly degraded (<0.24 folds). MS/MS fragmentation revealed that these most prominently degraded lipids were structurally enriched with fatty acyl (FA) 18:2 and 18:3 residues, such as MGDG (18:2/18:3), PC (18:2/18:2), PE (18:1/18:2), TG (18:3/18:3/18:3), DG (18:3/18:3), PA (18:3/18:3). Correlation analysis showed significant negative correlation between these lipids and FADVs such as aliphatic aldehydes, alcohols, ketones, and esters, etc. These most prominently degraded lipids were highlighted as the key potential aroma precursors during black tea processing, which were possibly oxidized and degraded into volatiles through enzyme- and thermal-driven pathways at different processing stages.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"100910"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577132/pdf/","citationCount":"0","resultStr":"{\"title\":\"New insights into the role of lipids in aroma formation during black tea processing revealed by integrated lipidomics and volatolomics.\",\"authors\":\"Shan Zhang, Le Chen, Linchi Niu, Haibo Yuan, Xujiang Shan, Qianting Zhang, Yuning Feng, Qinghua Zhou, Yongwen Jiang, Jia Li\",\"doi\":\"10.1016/j.crfs.2024.100910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipids are important tea aroma precursors. Due to the complexity of black tea processing involving both enzymatic and thermal reactions, the role of lipids in black tea aroma formation remained unclear. Herein, the dynamic changes of lipids and volatiles during black tea processing were simultaneously analyzed by lipidomics and volatolomics using ultra-high-performance liquid chromatography coupled to Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive) and gas chromatography-tandem mass spectrometry (GC-MS/MS). The lipidomics method was validated in linearity, reproducibility, and recovery, which showed a high reliability. A total of 374 lipids and 88 volatiles were detected. Among them, 362 lipids and 29 fatty acid-derived volatiles (FADVs) were significantly altered depending on different processing stages. During the enzyme-driven stages of black tea processing (withering, rolling and fermentation), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were largely downregulated (<0.33 folds). Instead, in the non-enzymatic drying steps of black tea processing, triacylglycerol (TG), diacylglycerol (DG), and phosphatidic acid (PA) were mainly degraded (<0.24 folds). MS/MS fragmentation revealed that these most prominently degraded lipids were structurally enriched with fatty acyl (FA) 18:2 and 18:3 residues, such as MGDG (18:2/18:3), PC (18:2/18:2), PE (18:1/18:2), TG (18:3/18:3/18:3), DG (18:3/18:3), PA (18:3/18:3). Correlation analysis showed significant negative correlation between these lipids and FADVs such as aliphatic aldehydes, alcohols, ketones, and esters, etc. These most prominently degraded lipids were highlighted as the key potential aroma precursors during black tea processing, which were possibly oxidized and degraded into volatiles through enzyme- and thermal-driven pathways at different processing stages.</p>\",\"PeriodicalId\":10939,\"journal\":{\"name\":\"Current Research in Food Science\",\"volume\":\"9 \",\"pages\":\"100910\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577132/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crfs.2024.100910\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100910","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
New insights into the role of lipids in aroma formation during black tea processing revealed by integrated lipidomics and volatolomics.
Lipids are important tea aroma precursors. Due to the complexity of black tea processing involving both enzymatic and thermal reactions, the role of lipids in black tea aroma formation remained unclear. Herein, the dynamic changes of lipids and volatiles during black tea processing were simultaneously analyzed by lipidomics and volatolomics using ultra-high-performance liquid chromatography coupled to Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive) and gas chromatography-tandem mass spectrometry (GC-MS/MS). The lipidomics method was validated in linearity, reproducibility, and recovery, which showed a high reliability. A total of 374 lipids and 88 volatiles were detected. Among them, 362 lipids and 29 fatty acid-derived volatiles (FADVs) were significantly altered depending on different processing stages. During the enzyme-driven stages of black tea processing (withering, rolling and fermentation), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were largely downregulated (<0.33 folds). Instead, in the non-enzymatic drying steps of black tea processing, triacylglycerol (TG), diacylglycerol (DG), and phosphatidic acid (PA) were mainly degraded (<0.24 folds). MS/MS fragmentation revealed that these most prominently degraded lipids were structurally enriched with fatty acyl (FA) 18:2 and 18:3 residues, such as MGDG (18:2/18:3), PC (18:2/18:2), PE (18:1/18:2), TG (18:3/18:3/18:3), DG (18:3/18:3), PA (18:3/18:3). Correlation analysis showed significant negative correlation between these lipids and FADVs such as aliphatic aldehydes, alcohols, ketones, and esters, etc. These most prominently degraded lipids were highlighted as the key potential aroma precursors during black tea processing, which were possibly oxidized and degraded into volatiles through enzyme- and thermal-driven pathways at different processing stages.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.