Jie Lin, Jiani Yang, Leqi Cui, Ravinder Nagpal, Prashant Singh, Gloria Salazar, Qinchun Rao, Ye Peng, Quancai Sun
{"title":"鲟鱼提取的肽 LLLE 可通过调节肠道微生物群及其代谢产物缓解结肠炎。","authors":"Jie Lin, Jiani Yang, Leqi Cui, Ravinder Nagpal, Prashant Singh, Gloria Salazar, Qinchun Rao, Ye Peng, Quancai Sun","doi":"10.1016/j.crfs.2024.100898","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease, entails chronic inflammation of the gastrointestinal tract. The pathogenesis of IBD implicates genetic factors, gut microbiome alterations, and immune dysregulation, contributing to its increasing global prevalence. The sturgeon-derived peptide, which exhibits promising anti-inflammatory effects, provides potential therapeutic insights for managing IBD symptoms. This study aims to elucidate the therapeutic mechanisms of novel sturgeon-derived peptide (LLLE, Leu-Leu-Leu-Glu) by investigating their effects on intestinal inflammation, gut microbiota composition, and fecal metabolites in a mouse model of IBD. LLLE administration alleviated weight loss and disease activity index (DAI) scores in dextran sulfate sodium salt (DSS)-induced colitis in mice. Histopathological examination showed LLLE pretreatment improved colon morphology and histopathological condition and decreased serum interleukin-6 (IL-6) levels. 16S rRNA sequencing indicated LLLE-modulation of gut microbiota, especially alleviated DSS-elevated <i>Bacteroidetes</i>. Fecal metabolomic analysis unveiled that LLLE restores critical metabolites such as indole-3-propionic acid, which is pivotal in anti-inflammatory responses. Altogether, sturgeon peptide exhibits considerable promise as a therapeutic agent for colitis, owing to its anti-inflammatory effects, modulation of gut microbiota, and restoration of essential fecal metabolites.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"100898"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sturgeon-derived peptide LLLE alleviates colitis via regulating gut microbiota and its metabolites.\",\"authors\":\"Jie Lin, Jiani Yang, Leqi Cui, Ravinder Nagpal, Prashant Singh, Gloria Salazar, Qinchun Rao, Ye Peng, Quancai Sun\",\"doi\":\"10.1016/j.crfs.2024.100898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease, entails chronic inflammation of the gastrointestinal tract. The pathogenesis of IBD implicates genetic factors, gut microbiome alterations, and immune dysregulation, contributing to its increasing global prevalence. The sturgeon-derived peptide, which exhibits promising anti-inflammatory effects, provides potential therapeutic insights for managing IBD symptoms. This study aims to elucidate the therapeutic mechanisms of novel sturgeon-derived peptide (LLLE, Leu-Leu-Leu-Glu) by investigating their effects on intestinal inflammation, gut microbiota composition, and fecal metabolites in a mouse model of IBD. LLLE administration alleviated weight loss and disease activity index (DAI) scores in dextran sulfate sodium salt (DSS)-induced colitis in mice. Histopathological examination showed LLLE pretreatment improved colon morphology and histopathological condition and decreased serum interleukin-6 (IL-6) levels. 16S rRNA sequencing indicated LLLE-modulation of gut microbiota, especially alleviated DSS-elevated <i>Bacteroidetes</i>. Fecal metabolomic analysis unveiled that LLLE restores critical metabolites such as indole-3-propionic acid, which is pivotal in anti-inflammatory responses. Altogether, sturgeon peptide exhibits considerable promise as a therapeutic agent for colitis, owing to its anti-inflammatory effects, modulation of gut microbiota, and restoration of essential fecal metabolites.</p>\",\"PeriodicalId\":10939,\"journal\":{\"name\":\"Current Research in Food Science\",\"volume\":\"9 \",\"pages\":\"100898\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crfs.2024.100898\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100898","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Sturgeon-derived peptide LLLE alleviates colitis via regulating gut microbiota and its metabolites.
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease, entails chronic inflammation of the gastrointestinal tract. The pathogenesis of IBD implicates genetic factors, gut microbiome alterations, and immune dysregulation, contributing to its increasing global prevalence. The sturgeon-derived peptide, which exhibits promising anti-inflammatory effects, provides potential therapeutic insights for managing IBD symptoms. This study aims to elucidate the therapeutic mechanisms of novel sturgeon-derived peptide (LLLE, Leu-Leu-Leu-Glu) by investigating their effects on intestinal inflammation, gut microbiota composition, and fecal metabolites in a mouse model of IBD. LLLE administration alleviated weight loss and disease activity index (DAI) scores in dextran sulfate sodium salt (DSS)-induced colitis in mice. Histopathological examination showed LLLE pretreatment improved colon morphology and histopathological condition and decreased serum interleukin-6 (IL-6) levels. 16S rRNA sequencing indicated LLLE-modulation of gut microbiota, especially alleviated DSS-elevated Bacteroidetes. Fecal metabolomic analysis unveiled that LLLE restores critical metabolites such as indole-3-propionic acid, which is pivotal in anti-inflammatory responses. Altogether, sturgeon peptide exhibits considerable promise as a therapeutic agent for colitis, owing to its anti-inflammatory effects, modulation of gut microbiota, and restoration of essential fecal metabolites.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.