Erika L Ellison, Peng Zhou, Yi-Hsuan Chu, Peter Hermanson, Lina Gomez-Cano, Zachary A Myers, Ankita Abnave, John Gray, Candice N Hirsch, Erich Grotewold, Nathan M Springer
{"title":"玉米转录因子突变体的转录组图谱分析,探索基因调控网络预测。","authors":"Erika L Ellison, Peng Zhou, Yi-Hsuan Chu, Peter Hermanson, Lina Gomez-Cano, Zachary A Myers, Ankita Abnave, John Gray, Candice N Hirsch, Erich Grotewold, Nathan M Springer","doi":"10.1093/g3journal/jkae274","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factors (TFs) play important roles in regulation of gene expression and phenotype. A variety of approaches have been utilized to develop gene-regulatory networks (GRNs) to predict the regulatory targets for each TF, such as yeast-one-hybrid (Y1H) screens and gene co-expression network (GCN) analysis. Here we identified potential TF targets and used a reverse genetics approach to test the predictions of several GRNs in maize. Loss-of-function mutant alleles were isolated for 22 maize TFs. These mutants did not exhibit obvious morphological phenotypes. However, transcriptomic profiling identified differentially expressed genes in each of the mutant genotypes, and targeted metabolic profiling indicated variable phenolic accumulation in some mutants. An analysis of expression levels for predicted target genes based on Y1H screens identified a small subset of predicted targets that exhibit altered expression levels. The analysis of predicted targets from GCN-based methods found significant enrichments for prediction sets of some TFs, but most predicted targets did not exhibit altered expression. This could result from false-positive GCN predictions, a TF with a secondary regulatory role resulting in minor effects on gene regulation, or redundant gene regulation by other TFs. Collectively, these findings suggest that loss-of-function for single uncharacterized TFs might have limited phenotypic impacts but can reveal subsets of GRN predicted targets with altered expression.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome profiling of maize transcription factor mutants to probe gene regulatory network predictions.\",\"authors\":\"Erika L Ellison, Peng Zhou, Yi-Hsuan Chu, Peter Hermanson, Lina Gomez-Cano, Zachary A Myers, Ankita Abnave, John Gray, Candice N Hirsch, Erich Grotewold, Nathan M Springer\",\"doi\":\"10.1093/g3journal/jkae274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcription factors (TFs) play important roles in regulation of gene expression and phenotype. A variety of approaches have been utilized to develop gene-regulatory networks (GRNs) to predict the regulatory targets for each TF, such as yeast-one-hybrid (Y1H) screens and gene co-expression network (GCN) analysis. Here we identified potential TF targets and used a reverse genetics approach to test the predictions of several GRNs in maize. Loss-of-function mutant alleles were isolated for 22 maize TFs. These mutants did not exhibit obvious morphological phenotypes. However, transcriptomic profiling identified differentially expressed genes in each of the mutant genotypes, and targeted metabolic profiling indicated variable phenolic accumulation in some mutants. An analysis of expression levels for predicted target genes based on Y1H screens identified a small subset of predicted targets that exhibit altered expression levels. The analysis of predicted targets from GCN-based methods found significant enrichments for prediction sets of some TFs, but most predicted targets did not exhibit altered expression. This could result from false-positive GCN predictions, a TF with a secondary regulatory role resulting in minor effects on gene regulation, or redundant gene regulation by other TFs. Collectively, these findings suggest that loss-of-function for single uncharacterized TFs might have limited phenotypic impacts but can reveal subsets of GRN predicted targets with altered expression.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae274\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae274","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Transcriptome profiling of maize transcription factor mutants to probe gene regulatory network predictions.
Transcription factors (TFs) play important roles in regulation of gene expression and phenotype. A variety of approaches have been utilized to develop gene-regulatory networks (GRNs) to predict the regulatory targets for each TF, such as yeast-one-hybrid (Y1H) screens and gene co-expression network (GCN) analysis. Here we identified potential TF targets and used a reverse genetics approach to test the predictions of several GRNs in maize. Loss-of-function mutant alleles were isolated for 22 maize TFs. These mutants did not exhibit obvious morphological phenotypes. However, transcriptomic profiling identified differentially expressed genes in each of the mutant genotypes, and targeted metabolic profiling indicated variable phenolic accumulation in some mutants. An analysis of expression levels for predicted target genes based on Y1H screens identified a small subset of predicted targets that exhibit altered expression levels. The analysis of predicted targets from GCN-based methods found significant enrichments for prediction sets of some TFs, but most predicted targets did not exhibit altered expression. This could result from false-positive GCN predictions, a TF with a secondary regulatory role resulting in minor effects on gene regulation, or redundant gene regulation by other TFs. Collectively, these findings suggest that loss-of-function for single uncharacterized TFs might have limited phenotypic impacts but can reveal subsets of GRN predicted targets with altered expression.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.