Antoine Filion, Mekala Sundaram, John Paul Schmidt, John M Drake, Patrick R Stephens
{"title":"生态边界反复发生人畜共患病病原体外溢事件的证据。","authors":"Antoine Filion, Mekala Sundaram, John Paul Schmidt, John M Drake, Patrick R Stephens","doi":"10.3389/fpubh.2024.1435233","DOIUrl":null,"url":null,"abstract":"<p><p>Anthropogenic modifications to the landscape have altered several ecological processes worldwide, creating new ecological boundaries at the human/wildlife interface. Outbreaks of zoonotic pathogens often occur at these ecological boundaries, but the mechanisms behind new emergences remain drastically understudied. Here, we test for the influence of two types of ecosystem boundaries on spillover risk: (1) biotic transition zones such as species range edges and transitions between ecoregions and (2) land use transition zones where wild landscapes occur in close proximity to heavily impacted areas of high human population density. Using ebolavirus as a model system and an ensemble machine learning modeling framework, we investigated the role of likely reservoir (bats) and accidental host (primates) range edges and patterns of land use (defined using SEDAC categories) on past spillover events. Our results show that overlapping species range edges and heightened habitat diversity increase ebolavirus outbreaks risk. Moreover, we show that gradual transition zones, represent by high proportion of rangelands, acts as a buffer to reduces outbreak risks. With increasing landscape changes worldwide, we provide novel ecological and evolutionary insights into our understanding of zoonotic pathogen emergence and highlight the risk of aggressively developing ecological boundaries.</p>","PeriodicalId":12548,"journal":{"name":"Frontiers in Public Health","volume":"12 ","pages":"1435233"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577354/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evidence of repeated zoonotic pathogen spillover events at ecological boundaries.\",\"authors\":\"Antoine Filion, Mekala Sundaram, John Paul Schmidt, John M Drake, Patrick R Stephens\",\"doi\":\"10.3389/fpubh.2024.1435233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anthropogenic modifications to the landscape have altered several ecological processes worldwide, creating new ecological boundaries at the human/wildlife interface. Outbreaks of zoonotic pathogens often occur at these ecological boundaries, but the mechanisms behind new emergences remain drastically understudied. Here, we test for the influence of two types of ecosystem boundaries on spillover risk: (1) biotic transition zones such as species range edges and transitions between ecoregions and (2) land use transition zones where wild landscapes occur in close proximity to heavily impacted areas of high human population density. Using ebolavirus as a model system and an ensemble machine learning modeling framework, we investigated the role of likely reservoir (bats) and accidental host (primates) range edges and patterns of land use (defined using SEDAC categories) on past spillover events. Our results show that overlapping species range edges and heightened habitat diversity increase ebolavirus outbreaks risk. Moreover, we show that gradual transition zones, represent by high proportion of rangelands, acts as a buffer to reduces outbreak risks. With increasing landscape changes worldwide, we provide novel ecological and evolutionary insights into our understanding of zoonotic pathogen emergence and highlight the risk of aggressively developing ecological boundaries.</p>\",\"PeriodicalId\":12548,\"journal\":{\"name\":\"Frontiers in Public Health\",\"volume\":\"12 \",\"pages\":\"1435233\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577354/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Public Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fpubh.2024.1435233\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fpubh.2024.1435233","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Evidence of repeated zoonotic pathogen spillover events at ecological boundaries.
Anthropogenic modifications to the landscape have altered several ecological processes worldwide, creating new ecological boundaries at the human/wildlife interface. Outbreaks of zoonotic pathogens often occur at these ecological boundaries, but the mechanisms behind new emergences remain drastically understudied. Here, we test for the influence of two types of ecosystem boundaries on spillover risk: (1) biotic transition zones such as species range edges and transitions between ecoregions and (2) land use transition zones where wild landscapes occur in close proximity to heavily impacted areas of high human population density. Using ebolavirus as a model system and an ensemble machine learning modeling framework, we investigated the role of likely reservoir (bats) and accidental host (primates) range edges and patterns of land use (defined using SEDAC categories) on past spillover events. Our results show that overlapping species range edges and heightened habitat diversity increase ebolavirus outbreaks risk. Moreover, we show that gradual transition zones, represent by high proportion of rangelands, acts as a buffer to reduces outbreak risks. With increasing landscape changes worldwide, we provide novel ecological and evolutionary insights into our understanding of zoonotic pathogen emergence and highlight the risk of aggressively developing ecological boundaries.
期刊介绍:
Frontiers in Public Health is a multidisciplinary open-access journal which publishes rigorously peer-reviewed research and is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians, policy makers and the public worldwide. The journal aims at overcoming current fragmentation in research and publication, promoting consistency in pursuing relevant scientific themes, and supporting finding dissemination and translation into practice.
Frontiers in Public Health is organized into Specialty Sections that cover different areas of research in the field. Please refer to the author guidelines for details on article types and the submission process.