Nedaa A Abd Al Rahim, Ammar A Razzak Mahmood, Lubna H Tahtamouni, Mai F AlSakhen, Salem R Yasin, Abdulrahman M Saleh
{"title":"作为表皮生长因子受体抑制剂的新型 4-氨基-3-氯苯甲酸酯衍生物:合成、硅学和生物学分析。","authors":"Nedaa A Abd Al Rahim, Ammar A Razzak Mahmood, Lubna H Tahtamouni, Mai F AlSakhen, Salem R Yasin, Abdulrahman M Saleh","doi":"10.1080/17568919.2024.2431478","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The main goal of this study was to synthesize new derivatives of 4-amino-3-chloro benzoate ester, including 1,3,4-oxadiazole derivatives (<b>N3a-d</b>), benzohydrazone derivatives (<b>N4a-c</b>), and hydrazine-1-carbothioamide derivatives (<b>N5a-d</b>) that target epidermal growth factor receptor (EGFR) tyrosine kinase.</p><p><strong>Materials & methods: </strong>The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR, and the anti-proliferative properties were tested in vitro.</p><p><strong>Results: </strong>In silico analysis showed that the hydrazine-1-carbothioamide derivatives (<b>N5a-d</b>) had the best matching pattern with EGFR pharmacophoric queries compared to erlotinib, exhibited a favorable safety profile, and showed the best stability among the tested compounds. Compound <b>N5a</b> induced cytotoxicity in the three cancer cell lines tested (A549, HepG2, and HCT-116), by targeting EGFR and activating caspase 3 and caspase 8, therefore, inducing the extrinsic apoptotic pathway.</p><p><strong>Conclusion: </strong>The results of this study show that compound <b>N5a</b> is a promising cytotoxic compound that inhibits the tyrosine kinase activity of EGFR.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2647-2662"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730846/pdf/","citationCount":"0","resultStr":"{\"title\":\"New 4-amino-3-chloro benzoate ester derivatives as EGFR inhibitors: synthesis, in silico and biological analyses.\",\"authors\":\"Nedaa A Abd Al Rahim, Ammar A Razzak Mahmood, Lubna H Tahtamouni, Mai F AlSakhen, Salem R Yasin, Abdulrahman M Saleh\",\"doi\":\"10.1080/17568919.2024.2431478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>The main goal of this study was to synthesize new derivatives of 4-amino-3-chloro benzoate ester, including 1,3,4-oxadiazole derivatives (<b>N3a-d</b>), benzohydrazone derivatives (<b>N4a-c</b>), and hydrazine-1-carbothioamide derivatives (<b>N5a-d</b>) that target epidermal growth factor receptor (EGFR) tyrosine kinase.</p><p><strong>Materials & methods: </strong>The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR, and the anti-proliferative properties were tested in vitro.</p><p><strong>Results: </strong>In silico analysis showed that the hydrazine-1-carbothioamide derivatives (<b>N5a-d</b>) had the best matching pattern with EGFR pharmacophoric queries compared to erlotinib, exhibited a favorable safety profile, and showed the best stability among the tested compounds. Compound <b>N5a</b> induced cytotoxicity in the three cancer cell lines tested (A549, HepG2, and HCT-116), by targeting EGFR and activating caspase 3 and caspase 8, therefore, inducing the extrinsic apoptotic pathway.</p><p><strong>Conclusion: </strong>The results of this study show that compound <b>N5a</b> is a promising cytotoxic compound that inhibits the tyrosine kinase activity of EGFR.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"2647-2662\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2431478\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2431478","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
New 4-amino-3-chloro benzoate ester derivatives as EGFR inhibitors: synthesis, in silico and biological analyses.
Aim: The main goal of this study was to synthesize new derivatives of 4-amino-3-chloro benzoate ester, including 1,3,4-oxadiazole derivatives (N3a-d), benzohydrazone derivatives (N4a-c), and hydrazine-1-carbothioamide derivatives (N5a-d) that target epidermal growth factor receptor (EGFR) tyrosine kinase.
Materials & methods: The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR, and the anti-proliferative properties were tested in vitro.
Results: In silico analysis showed that the hydrazine-1-carbothioamide derivatives (N5a-d) had the best matching pattern with EGFR pharmacophoric queries compared to erlotinib, exhibited a favorable safety profile, and showed the best stability among the tested compounds. Compound N5a induced cytotoxicity in the three cancer cell lines tested (A549, HepG2, and HCT-116), by targeting EGFR and activating caspase 3 and caspase 8, therefore, inducing the extrinsic apoptotic pathway.
Conclusion: The results of this study show that compound N5a is a promising cytotoxic compound that inhibits the tyrosine kinase activity of EGFR.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.