Wanchao Hu, Sabrine Naimi, Nicolas Trainel, Vanessa Liévin-Le Moal, Gabriel Perlemuter, Benoit Chassaing, Dragos Ciocan, Anne-Marie Cassard
{"title":"用微型生物反应器阵列模拟酒精相关肝病中微生物组对酒精和色氨酸的反应。","authors":"Wanchao Hu, Sabrine Naimi, Nicolas Trainel, Vanessa Liévin-Le Moal, Gabriel Perlemuter, Benoit Chassaing, Dragos Ciocan, Anne-Marie Cassard","doi":"10.1038/s41522-024-00602-9","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal microbiota (IM) plays a role in the severity of alcohol-associated liver disease. Modifying severe alcohol-associated hepatitis (AH) dysbiosis improves liver injury through tryptophan (Trp) metabolites and the aryl hydrocarbon receptor (AhR). However, Trp's effect on the IM in alcohol use disorder (AUD) patients remains unclear. Here, we used an in vitro microbiota modeling system named Minibioreactor arrays (MBRAs). Feces from AUD patients with or without AH were treated with low, normal, or high Trp concentrations, with subsequent treatment with alcohol. Microbiota composition and AhR activity were studied. We showed that microbial communities from donors were maintained in MBRAs. High and low Trp increased the abundance of pathogen Escherichia Shigella. In the absence of alcohol, Trp changed more bacteria in AUD IM compared to AH IM. Normal Trp increased the AhR activity. Overall, maintaining normal Trp levels may prevent dysbiosis in AUD or AH, pending in vivo confirmation.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"132"},"PeriodicalIF":7.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579296/pdf/","citationCount":"0","resultStr":"{\"title\":\"Minibioreactor arrays to model microbiome response to alcohol and tryptophan in the context of alcohol-associated liver disease.\",\"authors\":\"Wanchao Hu, Sabrine Naimi, Nicolas Trainel, Vanessa Liévin-Le Moal, Gabriel Perlemuter, Benoit Chassaing, Dragos Ciocan, Anne-Marie Cassard\",\"doi\":\"10.1038/s41522-024-00602-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intestinal microbiota (IM) plays a role in the severity of alcohol-associated liver disease. Modifying severe alcohol-associated hepatitis (AH) dysbiosis improves liver injury through tryptophan (Trp) metabolites and the aryl hydrocarbon receptor (AhR). However, Trp's effect on the IM in alcohol use disorder (AUD) patients remains unclear. Here, we used an in vitro microbiota modeling system named Minibioreactor arrays (MBRAs). Feces from AUD patients with or without AH were treated with low, normal, or high Trp concentrations, with subsequent treatment with alcohol. Microbiota composition and AhR activity were studied. We showed that microbial communities from donors were maintained in MBRAs. High and low Trp increased the abundance of pathogen Escherichia Shigella. In the absence of alcohol, Trp changed more bacteria in AUD IM compared to AH IM. Normal Trp increased the AhR activity. Overall, maintaining normal Trp levels may prevent dysbiosis in AUD or AH, pending in vivo confirmation.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"10 1\",\"pages\":\"132\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579296/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-024-00602-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00602-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Minibioreactor arrays to model microbiome response to alcohol and tryptophan in the context of alcohol-associated liver disease.
The intestinal microbiota (IM) plays a role in the severity of alcohol-associated liver disease. Modifying severe alcohol-associated hepatitis (AH) dysbiosis improves liver injury through tryptophan (Trp) metabolites and the aryl hydrocarbon receptor (AhR). However, Trp's effect on the IM in alcohol use disorder (AUD) patients remains unclear. Here, we used an in vitro microbiota modeling system named Minibioreactor arrays (MBRAs). Feces from AUD patients with or without AH were treated with low, normal, or high Trp concentrations, with subsequent treatment with alcohol. Microbiota composition and AhR activity were studied. We showed that microbial communities from donors were maintained in MBRAs. High and low Trp increased the abundance of pathogen Escherichia Shigella. In the absence of alcohol, Trp changed more bacteria in AUD IM compared to AH IM. Normal Trp increased the AhR activity. Overall, maintaining normal Trp levels may prevent dysbiosis in AUD or AH, pending in vivo confirmation.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.