{"title":"在皮肤过敏性炎症中,经受压力的单核细胞/巨噬细胞通过β2肾上腺素能受体丧失抗炎功能","authors":"Hitoshi Urakami, Soichiro Yoshikawa, Kei Nagao, Kensuke Miyake, Yuki Fujita, Ayaka Komura, Miho Nakashima, Ryusuke Umene, Shuhei Sano, Zheyu Hu, Emi Nishii, Atsushi Fujimura, Takeshi Y Hiyama, Keiji Naruse, Hajime Karasuyama, Tsuyoshi Inoue, Mitsutoshi Tominaga, Kenji Takamori, Shin Morizane, Sachiko Miyake","doi":"10.1016/j.jaci.2024.10.038","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Psychological stress can exacerbate the development of allergies; however, the underlying mechanisms remain poorly understood. IgE-mediated cutaneous allergic inflammation (IgE-CAI) is a basophil-dependent skin allergy with eosinophil infiltration at inflammatory sites. Its resolution involves anti-inflammatory programmed death ligand 2 (PD-L2)<sup>+</sup> macrophages.</p><p><strong>Objective: </strong>This study sought to elucidate the cellular and molecular mechanisms by which psychological stress exacerbates IgE-CAI.</p><p><strong>Methods: </strong>Neural tissue involved in stress-induced IgE-CAI exacerbation was identified by performing denervation and brain destruction experiments in mice. Immune cell transplantation, RNA sequencing, flow cytometry, and ELISA were used to identify and characterize immune cells with stress-altered functioning, followed by identification of key factors involved in IgE-CAI exacerbation.</p><p><strong>Results: </strong>Stress-induced exacerbation of IgE-CAI was found to be sympathetic and β2-adrenergic receptor (Adrb2)-dependent. Adoptive transfer experiments revealed that stress diminished the anti-inflammatory functions of PD-L2<sup>+</sup> macrophages through Adrb2, exacerbating the inflammation. RNA sequencing analysis indicated that PD-L2<sup>+</sup> macrophages in stressed mice exhibit reduced expression of efferocytosis-related genes, including Gas6 and MerTK. Consequently, the efferocytic capacity of these macrophages decreased, resulting in increased numbers of dead cells in the lesions. The exacerbation and upregulation of Ccl24 expression in IgE-CAI skin lesions were countered by a caspase-1 inhibitor.</p><p><strong>Conclusions: </strong>Psychological stress diminishes the efferocytotic capacity of PD-L2<sup>+</sup> macrophages, causing an accumulation of dead cells. This, in turn, heightens eosinophil infiltration through caspase-1-dependent production of Ccl24, exacerbating IgE-CAI.</p>","PeriodicalId":14936,"journal":{"name":"Journal of Allergy and Clinical Immunology","volume":" ","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress-experienced monocytes/macrophages lose anti-inflammatory function via β2-adrenergic receptor in skin allergic inflammation.\",\"authors\":\"Hitoshi Urakami, Soichiro Yoshikawa, Kei Nagao, Kensuke Miyake, Yuki Fujita, Ayaka Komura, Miho Nakashima, Ryusuke Umene, Shuhei Sano, Zheyu Hu, Emi Nishii, Atsushi Fujimura, Takeshi Y Hiyama, Keiji Naruse, Hajime Karasuyama, Tsuyoshi Inoue, Mitsutoshi Tominaga, Kenji Takamori, Shin Morizane, Sachiko Miyake\",\"doi\":\"10.1016/j.jaci.2024.10.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Psychological stress can exacerbate the development of allergies; however, the underlying mechanisms remain poorly understood. IgE-mediated cutaneous allergic inflammation (IgE-CAI) is a basophil-dependent skin allergy with eosinophil infiltration at inflammatory sites. Its resolution involves anti-inflammatory programmed death ligand 2 (PD-L2)<sup>+</sup> macrophages.</p><p><strong>Objective: </strong>This study sought to elucidate the cellular and molecular mechanisms by which psychological stress exacerbates IgE-CAI.</p><p><strong>Methods: </strong>Neural tissue involved in stress-induced IgE-CAI exacerbation was identified by performing denervation and brain destruction experiments in mice. Immune cell transplantation, RNA sequencing, flow cytometry, and ELISA were used to identify and characterize immune cells with stress-altered functioning, followed by identification of key factors involved in IgE-CAI exacerbation.</p><p><strong>Results: </strong>Stress-induced exacerbation of IgE-CAI was found to be sympathetic and β2-adrenergic receptor (Adrb2)-dependent. Adoptive transfer experiments revealed that stress diminished the anti-inflammatory functions of PD-L2<sup>+</sup> macrophages through Adrb2, exacerbating the inflammation. RNA sequencing analysis indicated that PD-L2<sup>+</sup> macrophages in stressed mice exhibit reduced expression of efferocytosis-related genes, including Gas6 and MerTK. Consequently, the efferocytic capacity of these macrophages decreased, resulting in increased numbers of dead cells in the lesions. The exacerbation and upregulation of Ccl24 expression in IgE-CAI skin lesions were countered by a caspase-1 inhibitor.</p><p><strong>Conclusions: </strong>Psychological stress diminishes the efferocytotic capacity of PD-L2<sup>+</sup> macrophages, causing an accumulation of dead cells. This, in turn, heightens eosinophil infiltration through caspase-1-dependent production of Ccl24, exacerbating IgE-CAI.</p>\",\"PeriodicalId\":14936,\"journal\":{\"name\":\"Journal of Allergy and Clinical Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Allergy and Clinical Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jaci.2024.10.038\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Allergy and Clinical Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jaci.2024.10.038","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ALLERGY","Score":null,"Total":0}
Stress-experienced monocytes/macrophages lose anti-inflammatory function via β2-adrenergic receptor in skin allergic inflammation.
Background: Psychological stress can exacerbate the development of allergies; however, the underlying mechanisms remain poorly understood. IgE-mediated cutaneous allergic inflammation (IgE-CAI) is a basophil-dependent skin allergy with eosinophil infiltration at inflammatory sites. Its resolution involves anti-inflammatory programmed death ligand 2 (PD-L2)+ macrophages.
Objective: This study sought to elucidate the cellular and molecular mechanisms by which psychological stress exacerbates IgE-CAI.
Methods: Neural tissue involved in stress-induced IgE-CAI exacerbation was identified by performing denervation and brain destruction experiments in mice. Immune cell transplantation, RNA sequencing, flow cytometry, and ELISA were used to identify and characterize immune cells with stress-altered functioning, followed by identification of key factors involved in IgE-CAI exacerbation.
Results: Stress-induced exacerbation of IgE-CAI was found to be sympathetic and β2-adrenergic receptor (Adrb2)-dependent. Adoptive transfer experiments revealed that stress diminished the anti-inflammatory functions of PD-L2+ macrophages through Adrb2, exacerbating the inflammation. RNA sequencing analysis indicated that PD-L2+ macrophages in stressed mice exhibit reduced expression of efferocytosis-related genes, including Gas6 and MerTK. Consequently, the efferocytic capacity of these macrophages decreased, resulting in increased numbers of dead cells in the lesions. The exacerbation and upregulation of Ccl24 expression in IgE-CAI skin lesions were countered by a caspase-1 inhibitor.
Conclusions: Psychological stress diminishes the efferocytotic capacity of PD-L2+ macrophages, causing an accumulation of dead cells. This, in turn, heightens eosinophil infiltration through caspase-1-dependent production of Ccl24, exacerbating IgE-CAI.
期刊介绍:
The Journal of Allergy and Clinical Immunology is a prestigious publication that features groundbreaking research in the fields of Allergy, Asthma, and Immunology. This influential journal publishes high-impact research papers that explore various topics, including asthma, food allergy, allergic rhinitis, atopic dermatitis, primary immune deficiencies, occupational and environmental allergy, and other allergic and immunologic diseases. The articles not only report on clinical trials and mechanistic studies but also provide insights into novel therapies, underlying mechanisms, and important discoveries that contribute to our understanding of these diseases. By sharing this valuable information, the journal aims to enhance the diagnosis and management of patients in the future.