Desiree Walton, Marie Gilbertson, Mark Cunningham, Dave Onorato, Joshua Ringer, Meggan Craft
{"title":"监测佛罗里达豹(Puma concolor coryi)的传染病血清流行率。","authors":"Desiree Walton, Marie Gilbertson, Mark Cunningham, Dave Onorato, Joshua Ringer, Meggan Craft","doi":"10.7589/JWD-D-24-00057","DOIUrl":null,"url":null,"abstract":"<p><p>Infectious diseases can have detrimental effects on wildlife populations, particularly those that persist at small sizes, have low genetic diversity, and are affected by fragmented habitat. One such example is the endangered Florida panther (Puma concolor coryi), which has been intensively managed since the early 1980s, with the current population ranging between 120 and 230 individuals. For more than three decades, panthers have been captured, demographics recorded, and blood samples collected to monitor for multiple infectious diseases; however, an updated comprehensive study of many of these pathogens has not occurred since 1991. Our goal was to identify temporal patterns and spatial clustering in seroprevalence; determine if the pathogens of interest tend to co-occur; and describe relationships between an individual's genetic assignment (admixed or canonical) and seropositivity. We analyzed serology data for eight pathogens representing different modes of transmission (direct, indirect, vector borne) and infection duration (acute, chronic) from 232 panthers collected between 1992 and 2017. Panthers held consistently high seropositivity for feline calicivirus (62.3%) and panleukopenia virus (79.7%) throughout the study, whereas feline herpesvirus and feline leukemia virus were at lower prevalence (3.1% and 2.4%, respectively), although neither had been noted prior to 1992. Panthers were frequently seropositive for canine distemper virus and feline immunodeficiency virus, and seroprevalence fluctuated through time. West Nile virus seropositivity increased over the study period following its introduction in North America in 1999. Panthers were consistently negative for feline coronavirus, which causes feline infectious peritonitis. Genetics and demographics (sex and age) had little influence on serostatus, and coexposure among pathogens did not tend to occur. Both feline immunodeficiency virus and feline leukemia virus appeared to have spatial clusters of seropositive individuals. Our findings enhance the understanding of pathogen exposure in panthers, informing and supporting ongoing surveillance efforts for timely detection and management of potential disease threats in vulnerable populations.</p>","PeriodicalId":17602,"journal":{"name":"Journal of Wildlife Diseases","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Seroprevalence of Infectious Diseases in the Florida Panther (Puma concolor coryi).\",\"authors\":\"Desiree Walton, Marie Gilbertson, Mark Cunningham, Dave Onorato, Joshua Ringer, Meggan Craft\",\"doi\":\"10.7589/JWD-D-24-00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infectious diseases can have detrimental effects on wildlife populations, particularly those that persist at small sizes, have low genetic diversity, and are affected by fragmented habitat. One such example is the endangered Florida panther (Puma concolor coryi), which has been intensively managed since the early 1980s, with the current population ranging between 120 and 230 individuals. For more than three decades, panthers have been captured, demographics recorded, and blood samples collected to monitor for multiple infectious diseases; however, an updated comprehensive study of many of these pathogens has not occurred since 1991. Our goal was to identify temporal patterns and spatial clustering in seroprevalence; determine if the pathogens of interest tend to co-occur; and describe relationships between an individual's genetic assignment (admixed or canonical) and seropositivity. We analyzed serology data for eight pathogens representing different modes of transmission (direct, indirect, vector borne) and infection duration (acute, chronic) from 232 panthers collected between 1992 and 2017. Panthers held consistently high seropositivity for feline calicivirus (62.3%) and panleukopenia virus (79.7%) throughout the study, whereas feline herpesvirus and feline leukemia virus were at lower prevalence (3.1% and 2.4%, respectively), although neither had been noted prior to 1992. Panthers were frequently seropositive for canine distemper virus and feline immunodeficiency virus, and seroprevalence fluctuated through time. West Nile virus seropositivity increased over the study period following its introduction in North America in 1999. Panthers were consistently negative for feline coronavirus, which causes feline infectious peritonitis. Genetics and demographics (sex and age) had little influence on serostatus, and coexposure among pathogens did not tend to occur. Both feline immunodeficiency virus and feline leukemia virus appeared to have spatial clusters of seropositive individuals. Our findings enhance the understanding of pathogen exposure in panthers, informing and supporting ongoing surveillance efforts for timely detection and management of potential disease threats in vulnerable populations.</p>\",\"PeriodicalId\":17602,\"journal\":{\"name\":\"Journal of Wildlife Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wildlife Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.7589/JWD-D-24-00057\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wildlife Diseases","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.7589/JWD-D-24-00057","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Monitoring Seroprevalence of Infectious Diseases in the Florida Panther (Puma concolor coryi).
Infectious diseases can have detrimental effects on wildlife populations, particularly those that persist at small sizes, have low genetic diversity, and are affected by fragmented habitat. One such example is the endangered Florida panther (Puma concolor coryi), which has been intensively managed since the early 1980s, with the current population ranging between 120 and 230 individuals. For more than three decades, panthers have been captured, demographics recorded, and blood samples collected to monitor for multiple infectious diseases; however, an updated comprehensive study of many of these pathogens has not occurred since 1991. Our goal was to identify temporal patterns and spatial clustering in seroprevalence; determine if the pathogens of interest tend to co-occur; and describe relationships between an individual's genetic assignment (admixed or canonical) and seropositivity. We analyzed serology data for eight pathogens representing different modes of transmission (direct, indirect, vector borne) and infection duration (acute, chronic) from 232 panthers collected between 1992 and 2017. Panthers held consistently high seropositivity for feline calicivirus (62.3%) and panleukopenia virus (79.7%) throughout the study, whereas feline herpesvirus and feline leukemia virus were at lower prevalence (3.1% and 2.4%, respectively), although neither had been noted prior to 1992. Panthers were frequently seropositive for canine distemper virus and feline immunodeficiency virus, and seroprevalence fluctuated through time. West Nile virus seropositivity increased over the study period following its introduction in North America in 1999. Panthers were consistently negative for feline coronavirus, which causes feline infectious peritonitis. Genetics and demographics (sex and age) had little influence on serostatus, and coexposure among pathogens did not tend to occur. Both feline immunodeficiency virus and feline leukemia virus appeared to have spatial clusters of seropositive individuals. Our findings enhance the understanding of pathogen exposure in panthers, informing and supporting ongoing surveillance efforts for timely detection and management of potential disease threats in vulnerable populations.
期刊介绍:
The JWD publishes reports of wildlife disease investigations, research papers, brief research notes, case and epizootic reports, review articles, and book reviews. The JWD publishes the results of original research and observations dealing with all aspects of infectious, parasitic, toxic, nutritional, physiologic, developmental and neoplastic diseases, environmental contamination, and other factors impinging on the health and survival of free-living or occasionally captive populations of wild animals, including fish, amphibians, reptiles, birds, and mammals. Papers on zoonoses involving wildlife and on chemical immobilization of wild animals are also published. Manuscripts dealing with surveys and case reports may be published in the Journal provided that they contain significant new information or have significance for better understanding health and disease in wild populations. Authors are encouraged to address the wildlife management implications of their studies, where appropriate.