基于细胞-微球的活体微混合体,用于调节成骨过程,促进生物矿化。

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Regenerative Biomaterials Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI:10.1093/rb/rbae125
Zhaofan Hu, Yunyang Zhang, Jingjing Zhang, Ran Zheng, Yang Yang, Fei Kong, Haoran Li, Xinyan Yang, Shuhui Yang, Xiangdong Kong, Ruibo Zhao
{"title":"基于细胞-微球的活体微混合体,用于调节成骨过程,促进生物矿化。","authors":"Zhaofan Hu, Yunyang Zhang, Jingjing Zhang, Ran Zheng, Yang Yang, Fei Kong, Haoran Li, Xinyan Yang, Shuhui Yang, Xiangdong Kong, Ruibo Zhao","doi":"10.1093/rb/rbae125","DOIUrl":null,"url":null,"abstract":"<p><p>Biomineralization-based cell-material living composites <i>ex vivo</i> showed great potential for living materials construction and cell regulation. However, cells in scaffolds with unconnected pores usually induce confined nutrient transfer and cell-cell communications, affecting the transformation of osteoblasts into osteocytes and the mineralization process. Herein, the osteoblast-materials living hybrids were constructed with porous PLLA microspheres using a rational design, in which cell-based living materials presented an improved osteoblast differentiation and mineralization model using rationally designed cell-microsphere composites. The results indicated that the microfluidic-based technique provided an efficient and highly controllable approach for producing on-demand PLLA microspheres with tiny pores (<5 μm), medium pores (5-15 μm) and large pores (>15 μm), as well as further drug delivery. Furthermore, the simvastatin (SIM)-loaded porous PLLA microsphere with ε-polylysine (ε-PL) modification was used for osteoblast (MC3T3-E1) implantation, achieving the cell-material living microhybrids, and the results demonstrated the ε-PL surface modification and SIM could improve osteoblast behavior regulation, including cell adhesion, proliferation, as well as the antibacterial effects. Both <i>in vitro</i> and <i>in vivo</i> results significantly demonstrated further cell proliferation, differentiation and cascade mineralization regulation. Then, the quantitative polymerase chain reaction or histological staining of typical markers, including collagen type I, alkaline phosphatase, runt-related transcription factor 2 and bone morphogenetic protein 2, as well as the calcium mineral deposition staining <i>in situ</i>, reconfirmed the transformation of osteoblasts into osteocytes. These achievements revealed a promising boost in osteogenesis toward mineralization at the microtissue level by cell-microsphere integration, suggesting an alternative strategy for materials-based <i>ex vivo</i> tissue construction and cell regulation, further demonstrating excellent application prospects in the field of biomineralization-based tissue regeneration.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae125"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578599/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell-microsphere based living microhybrids for osteogenesis regulating to boosting biomineralization.\",\"authors\":\"Zhaofan Hu, Yunyang Zhang, Jingjing Zhang, Ran Zheng, Yang Yang, Fei Kong, Haoran Li, Xinyan Yang, Shuhui Yang, Xiangdong Kong, Ruibo Zhao\",\"doi\":\"10.1093/rb/rbae125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomineralization-based cell-material living composites <i>ex vivo</i> showed great potential for living materials construction and cell regulation. However, cells in scaffolds with unconnected pores usually induce confined nutrient transfer and cell-cell communications, affecting the transformation of osteoblasts into osteocytes and the mineralization process. Herein, the osteoblast-materials living hybrids were constructed with porous PLLA microspheres using a rational design, in which cell-based living materials presented an improved osteoblast differentiation and mineralization model using rationally designed cell-microsphere composites. The results indicated that the microfluidic-based technique provided an efficient and highly controllable approach for producing on-demand PLLA microspheres with tiny pores (<5 μm), medium pores (5-15 μm) and large pores (>15 μm), as well as further drug delivery. Furthermore, the simvastatin (SIM)-loaded porous PLLA microsphere with ε-polylysine (ε-PL) modification was used for osteoblast (MC3T3-E1) implantation, achieving the cell-material living microhybrids, and the results demonstrated the ε-PL surface modification and SIM could improve osteoblast behavior regulation, including cell adhesion, proliferation, as well as the antibacterial effects. Both <i>in vitro</i> and <i>in vivo</i> results significantly demonstrated further cell proliferation, differentiation and cascade mineralization regulation. Then, the quantitative polymerase chain reaction or histological staining of typical markers, including collagen type I, alkaline phosphatase, runt-related transcription factor 2 and bone morphogenetic protein 2, as well as the calcium mineral deposition staining <i>in situ</i>, reconfirmed the transformation of osteoblasts into osteocytes. These achievements revealed a promising boost in osteogenesis toward mineralization at the microtissue level by cell-microsphere integration, suggesting an alternative strategy for materials-based <i>ex vivo</i> tissue construction and cell regulation, further demonstrating excellent application prospects in the field of biomineralization-based tissue regeneration.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"11 \",\"pages\":\"rbae125\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578599/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae125\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae125","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

基于生物矿化的体外细胞-材料活复合材料在活材料构建和细胞调控方面显示出巨大潜力。然而,未连通孔隙的支架中的细胞通常会导致营养物质传递和细胞间通讯受限,影响成骨细胞向骨细胞的转化和矿化过程。本文利用合理设计的细胞-微球复合材料,用多孔聚乳酸微球构建了成骨细胞-材料活体混合体,其中基于细胞的活体材料展示了一种改进的成骨细胞分化和矿化模型。结果表明,基于微流体的技术为按需生产具有微孔(15 μm)的聚乳酸微球以及进一步的药物输送提供了一种高效且高度可控的方法。结果表明ε-PL表面修饰和SIM能改善成骨细胞的行为调控,包括细胞粘附、增殖和抗菌作用。体外和体内研究结果均显著表明,细胞增殖、分化和级联矿化调控能力得到进一步提高。然后,典型标志物的定量聚合酶链反应或组织学染色,包括胶原 I 型、碱性磷酸酶、runt 相关转录因子 2 和骨形态发生蛋白 2,以及钙矿物质原位沉积染色,再次证实了成骨细胞向骨细胞的转化。这些成果揭示了通过细胞-微球整合在微组织水平促进成骨向矿化方向发展的前景,为基于材料的体外组织构建和细胞调控提供了另一种策略,进一步展示了在基于生物矿化的组织再生领域的良好应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell-microsphere based living microhybrids for osteogenesis regulating to boosting biomineralization.

Biomineralization-based cell-material living composites ex vivo showed great potential for living materials construction and cell regulation. However, cells in scaffolds with unconnected pores usually induce confined nutrient transfer and cell-cell communications, affecting the transformation of osteoblasts into osteocytes and the mineralization process. Herein, the osteoblast-materials living hybrids were constructed with porous PLLA microspheres using a rational design, in which cell-based living materials presented an improved osteoblast differentiation and mineralization model using rationally designed cell-microsphere composites. The results indicated that the microfluidic-based technique provided an efficient and highly controllable approach for producing on-demand PLLA microspheres with tiny pores (<5 μm), medium pores (5-15 μm) and large pores (>15 μm), as well as further drug delivery. Furthermore, the simvastatin (SIM)-loaded porous PLLA microsphere with ε-polylysine (ε-PL) modification was used for osteoblast (MC3T3-E1) implantation, achieving the cell-material living microhybrids, and the results demonstrated the ε-PL surface modification and SIM could improve osteoblast behavior regulation, including cell adhesion, proliferation, as well as the antibacterial effects. Both in vitro and in vivo results significantly demonstrated further cell proliferation, differentiation and cascade mineralization regulation. Then, the quantitative polymerase chain reaction or histological staining of typical markers, including collagen type I, alkaline phosphatase, runt-related transcription factor 2 and bone morphogenetic protein 2, as well as the calcium mineral deposition staining in situ, reconfirmed the transformation of osteoblasts into osteocytes. These achievements revealed a promising boost in osteogenesis toward mineralization at the microtissue level by cell-microsphere integration, suggesting an alternative strategy for materials-based ex vivo tissue construction and cell regulation, further demonstrating excellent application prospects in the field of biomineralization-based tissue regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
期刊最新文献
Correction to: Nanocarrier of Pin1 inhibitor based on supercritical fluid technology inhibits cancer metastasis by blocking multiple signaling pathways. Cell-microsphere based living microhybrids for osteogenesis regulating to boosting biomineralization. Determination of DNA content as quality control in decellularized tissues: challenges and pitfalls. Injectable drug-loaded thermosensitive hydrogel delivery system for protecting retina ganglion cells in traumatic optic neuropathy. Correction to: Constructing a highly efficient multifunctional carbon quantum dot platform for the treatment of infectious wounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1