VONet:用最少的共聚焦图像进行类器官结构三维重建的深度学习网络。

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-09-30 eCollection Date: 2024-10-11 DOI:10.1016/j.patter.2024.101063
Euijeong Song, Minsuh Kim, Siyoung Lee, Hui-Wen Liu, Jihyun Kim, Dong-Hee Choi, Roger Kamm, Seok Chung, Ji Hun Yang, Tae Hwan Kwak
{"title":"VONet:用最少的共聚焦图像进行类器官结构三维重建的深度学习网络。","authors":"Euijeong Song, Minsuh Kim, Siyoung Lee, Hui-Wen Liu, Jihyun Kim, Dong-Hee Choi, Roger Kamm, Seok Chung, Ji Hun Yang, Tae Hwan Kwak","doi":"10.1016/j.patter.2024.101063","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids and 3D imaging techniques are crucial for studying human tissue structure and function, but traditional 3D reconstruction methods are expensive and time consuming, relying on complete z stack confocal microscopy data. This paper introduces VONet, a deep learning-based system for 3D organoid rendering that uses a fully convolutional neural network to reconstruct entire 3D structures from a minimal number of z stack images. VONet was trained on a library of over 39,000 virtual organoids (VOs) with diverse structural features and achieved an average intersection over union of 0.82 in performance validation. Remarkably, VONet can predict the structure of deeper focal plane regions, unseen by conventional confocal microscopy. This innovative approach and VO dataset offer significant advancements in 3D bioimaging technologies.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"5 10","pages":"101063"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573902/pdf/","citationCount":"0","resultStr":"{\"title\":\"VONet: A deep learning network for 3D reconstruction of organoid structures with a minimal number of confocal images.\",\"authors\":\"Euijeong Song, Minsuh Kim, Siyoung Lee, Hui-Wen Liu, Jihyun Kim, Dong-Hee Choi, Roger Kamm, Seok Chung, Ji Hun Yang, Tae Hwan Kwak\",\"doi\":\"10.1016/j.patter.2024.101063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organoids and 3D imaging techniques are crucial for studying human tissue structure and function, but traditional 3D reconstruction methods are expensive and time consuming, relying on complete z stack confocal microscopy data. This paper introduces VONet, a deep learning-based system for 3D organoid rendering that uses a fully convolutional neural network to reconstruct entire 3D structures from a minimal number of z stack images. VONet was trained on a library of over 39,000 virtual organoids (VOs) with diverse structural features and achieved an average intersection over union of 0.82 in performance validation. Remarkably, VONet can predict the structure of deeper focal plane regions, unseen by conventional confocal microscopy. This innovative approach and VO dataset offer significant advancements in 3D bioimaging technologies.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"5 10\",\"pages\":\"101063\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

类器官和三维成像技术对研究人体组织结构和功能至关重要,但传统的三维重建方法依赖于完整的z堆栈共聚焦显微镜数据,既昂贵又耗时。本文介绍的 VONet 是一种基于深度学习的三维类器官渲染系统,它使用完全卷积神经网络从最少的 z 叠加图像重建整个三维结构。VONet 在一个包含 39,000 多个具有不同结构特征的虚拟类器官(VO)的库中进行了训练,并在性能验证中取得了 0.82 的平均交集比结合率。值得注意的是,VONet 可以预测传统共聚焦显微镜无法看到的更深焦平面区域的结构。这种创新方法和 VO 数据集为三维生物成像技术带来了重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VONet: A deep learning network for 3D reconstruction of organoid structures with a minimal number of confocal images.

Organoids and 3D imaging techniques are crucial for studying human tissue structure and function, but traditional 3D reconstruction methods are expensive and time consuming, relying on complete z stack confocal microscopy data. This paper introduces VONet, a deep learning-based system for 3D organoid rendering that uses a fully convolutional neural network to reconstruct entire 3D structures from a minimal number of z stack images. VONet was trained on a library of over 39,000 virtual organoids (VOs) with diverse structural features and achieved an average intersection over union of 0.82 in performance validation. Remarkably, VONet can predict the structure of deeper focal plane regions, unseen by conventional confocal microscopy. This innovative approach and VO dataset offer significant advancements in 3D bioimaging technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1