人工智能增强的集体智慧。

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-10-10 eCollection Date: 2024-11-08 DOI:10.1016/j.patter.2024.101074
Hao Cui, Taha Yasseri
{"title":"人工智能增强的集体智慧。","authors":"Hao Cui, Taha Yasseri","doi":"10.1016/j.patter.2024.101074","DOIUrl":null,"url":null,"abstract":"<p><p>Current societal challenges exceed the capacity of humans operating either alone or collectively. As AI evolves, its role within human collectives will vary from an assistive tool to a participatory member. Humans and AI possess complementary capabilities that, together, can surpass the collective intelligence of either humans or AI in isolation. However, the interactions in human-AI systems are inherently complex, involving intricate processes and interdependencies. This review incorporates perspectives from complex network science to conceptualize a multilayer representation of human-AI collective intelligence, comprising cognition, physical, and information layers. Within this multilayer network, humans and AI agents exhibit varying characteristics; humans differ in diversity from surface-level to deep-level attributes, while AI agents range in degrees of functionality and anthropomorphism. We explore how agents' diversity and interactions influence the system's collective intelligence and analyze real-world instances of AI-enhanced collective intelligence. We conclude by considering potential challenges and future developments in this field.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"5 11","pages":"101074"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573907/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-enhanced collective intelligence.\",\"authors\":\"Hao Cui, Taha Yasseri\",\"doi\":\"10.1016/j.patter.2024.101074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current societal challenges exceed the capacity of humans operating either alone or collectively. As AI evolves, its role within human collectives will vary from an assistive tool to a participatory member. Humans and AI possess complementary capabilities that, together, can surpass the collective intelligence of either humans or AI in isolation. However, the interactions in human-AI systems are inherently complex, involving intricate processes and interdependencies. This review incorporates perspectives from complex network science to conceptualize a multilayer representation of human-AI collective intelligence, comprising cognition, physical, and information layers. Within this multilayer network, humans and AI agents exhibit varying characteristics; humans differ in diversity from surface-level to deep-level attributes, while AI agents range in degrees of functionality and anthropomorphism. We explore how agents' diversity and interactions influence the system's collective intelligence and analyze real-world instances of AI-enhanced collective intelligence. We conclude by considering potential challenges and future developments in this field.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"5 11\",\"pages\":\"101074\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

当前的社会挑战超出了人类单独或集体行动的能力。随着人工智能的发展,它在人类集体中的角色将从辅助工具变为参与成员。人类和人工智能具有互补能力,两者结合在一起,可以超越人类或人工智能单独发挥的集体智慧。然而,人类与人工智能系统的互动本身就很复杂,涉及错综复杂的过程和相互依存关系。本综述从复杂网络科学的角度出发,构思了人类-人工智能集体智能的多层表征,包括认知层、物理层和信息层。在这个多层网络中,人类和人工智能代理表现出不同的特征;人类从表层到深层属性的多样性各不相同,而人工智能代理的功能和拟人化程度也各不相同。我们探讨了代理的多样性和互动如何影响系统的集体智能,并分析了现实世界中人工智能增强集体智能的实例。最后,我们探讨了这一领域的潜在挑战和未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-enhanced collective intelligence.

Current societal challenges exceed the capacity of humans operating either alone or collectively. As AI evolves, its role within human collectives will vary from an assistive tool to a participatory member. Humans and AI possess complementary capabilities that, together, can surpass the collective intelligence of either humans or AI in isolation. However, the interactions in human-AI systems are inherently complex, involving intricate processes and interdependencies. This review incorporates perspectives from complex network science to conceptualize a multilayer representation of human-AI collective intelligence, comprising cognition, physical, and information layers. Within this multilayer network, humans and AI agents exhibit varying characteristics; humans differ in diversity from surface-level to deep-level attributes, while AI agents range in degrees of functionality and anthropomorphism. We explore how agents' diversity and interactions influence the system's collective intelligence and analyze real-world instances of AI-enhanced collective intelligence. We conclude by considering potential challenges and future developments in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1