单细胞基因表达数据的隐私。

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-11-08 DOI:10.1016/j.patter.2024.101096
Hyunghoon Cho
{"title":"单细胞基因表达数据的隐私。","authors":"Hyunghoon Cho","doi":"10.1016/j.patter.2024.101096","DOIUrl":null,"url":null,"abstract":"<p><p>The possibility that single-cell gene expression datasets could leak information about individuals' genotypes has been largely unexplored. Walker et al. showed that even noisy genotype predictions derived from these data can be linked to the corresponding genotype profiles with significant accuracy.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"5 11","pages":"101096"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573887/pdf/","citationCount":"0","resultStr":"{\"title\":\"Privacy of single-cell gene expression data.\",\"authors\":\"Hyunghoon Cho\",\"doi\":\"10.1016/j.patter.2024.101096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The possibility that single-cell gene expression datasets could leak information about individuals' genotypes has been largely unexplored. Walker et al. showed that even noisy genotype predictions derived from these data can be linked to the corresponding genotype profiles with significant accuracy.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"5 11\",\"pages\":\"101096\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573887/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

单细胞基因表达数据集可能会泄露个体的基因型信息,但这种可能性在很大程度上还未被探索。Walker 等人的研究表明,即使从这些数据中得出的基因型预测是嘈杂的,也能准确无误地与相应的基因型图谱联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy of single-cell gene expression data.

The possibility that single-cell gene expression datasets could leak information about individuals' genotypes has been largely unexplored. Walker et al. showed that even noisy genotype predictions derived from these data can be linked to the corresponding genotype profiles with significant accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1