三维皮肤生物打印的进展:工艺、生物墨水、应用和传感器集成。

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2025-02-01 Epub Date: 2024-11-19 DOI:10.1088/2631-7990/ad878c
I Deniz Derman, Taino Rivera, Laura Garriga Cerda, Yogendra Pratap Singh, Shweta Saini, Hasan Erbil Abaci, Ibrahim T Ozbolat
{"title":"三维皮肤生物打印的进展:工艺、生物墨水、应用和传感器集成。","authors":"I Deniz Derman, Taino Rivera, Laura Garriga Cerda, Yogendra Pratap Singh, Shweta Saini, Hasan Erbil Abaci, Ibrahim T Ozbolat","doi":"10.1088/2631-7990/ad878c","DOIUrl":null,"url":null,"abstract":"<p><p>This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.</p>","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"7 1","pages":"012009"},"PeriodicalIF":16.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration.\",\"authors\":\"I Deniz Derman, Taino Rivera, Laura Garriga Cerda, Yogendra Pratap Singh, Shweta Saini, Hasan Erbil Abaci, Ibrahim T Ozbolat\",\"doi\":\"10.1088/2631-7990/ad878c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.</p>\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"7 1\",\"pages\":\"012009\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad878c\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad878c","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

这篇综合评论探讨了皮肤生物打印的多面性,为皮肤病学研究带来了革命性的变化。文章对利用挤压、液滴、激光和光等技术以及用于皮肤生物制造的专用生物墨水进行皮肤生物打印的应用,以及生物打印毛囊、汗腺和实现皮肤色素沉着的复杂方面进行了深入探讨。挑战仍然存在,包括血管化的需要、安全问题以及有效临床转化的自动化流程的整合。综述进一步研究了生物传感器技术的应用,强调了它们在监测和加强伤口愈合过程中的作用。在强调该领域显著进展的同时,也对关键的局限性和关注点进行了批判性研究,以提供一个平衡的视角。本综述旨在为科学家、工程师和医疗服务提供者提供指导,帮助他们更深入地了解皮肤生物打印的现状、挑战和未来发展方向,从而实现组织工程和再生医学领域的变革性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration.

This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1