压力会影响人类在太空飞行中的运动时间。

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES npj Microgravity Pub Date : 2024-11-21 DOI:10.1038/s41526-024-00439-8
Yu Tian, Zhaoran Zhang, Changhua Jiang, Dong Chen, Zhaoxia Liu, Ming Wei, Chunhui Wang, Kunlin Wei
{"title":"压力会影响人类在太空飞行中的运动时间。","authors":"Yu Tian, Zhaoran Zhang, Changhua Jiang, Dong Chen, Zhaoxia Liu, Ming Wei, Chunhui Wang, Kunlin Wei","doi":"10.1038/s41526-024-00439-8","DOIUrl":null,"url":null,"abstract":"<p><p>Crewed outer-space missions require adequate motor capacity among astronauts, whose sensorimotor system is disturbed by microgravity. Stressors other than microgravity, e.g., sleep loss, confinement, and high workload, characterize the living experience in space and potentially affect motor performance. However, the evidence of these stressors remains elusive. We recruited twelve taikonauts from the China Space Station to conduct a motor timing task that minimized the effect of microgravity on motor performance. Participants showed a remarkable increase in motor timing variance during spaceflight, compared to their pre- and post-flight performance and that of ground controls. Model-based analysis revealed that their timing deficits were driven by increased central noise instead of impaired motor execution. Our study provides evidence that nonspecific stressors can profoundly affect motor performance during spaceflight.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"108"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stressors affect human motor timing during spaceflight.\",\"authors\":\"Yu Tian, Zhaoran Zhang, Changhua Jiang, Dong Chen, Zhaoxia Liu, Ming Wei, Chunhui Wang, Kunlin Wei\",\"doi\":\"10.1038/s41526-024-00439-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crewed outer-space missions require adequate motor capacity among astronauts, whose sensorimotor system is disturbed by microgravity. Stressors other than microgravity, e.g., sleep loss, confinement, and high workload, characterize the living experience in space and potentially affect motor performance. However, the evidence of these stressors remains elusive. We recruited twelve taikonauts from the China Space Station to conduct a motor timing task that minimized the effect of microgravity on motor performance. Participants showed a remarkable increase in motor timing variance during spaceflight, compared to their pre- and post-flight performance and that of ground controls. Model-based analysis revealed that their timing deficits were driven by increased central noise instead of impaired motor execution. Our study provides evidence that nonspecific stressors can profoundly affect motor performance during spaceflight.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"10 1\",\"pages\":\"108\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00439-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00439-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

乘员外太空飞行任务要求宇航员具备足够的运动能力,因为微重力会干扰他们的感觉运动系统。微重力以外的压力,如睡眠不足、禁闭和高负荷工作,是太空生活经历的特点,也可能影响运动能力。然而,这些压力的证据仍然难以捉摸。我们从中国空间站招募了12名宇航员,进行了一项运动计时任务,以尽量减少微重力对运动表现的影响。与飞行前和飞行后的表现以及地面对照组相比,参加者在太空飞行期间的运动计时方差明显增加。基于模型的分析表明,他们的计时缺陷是由中枢噪音增加而非运动执行受损引起的。我们的研究提供了证据,证明非特异性应激源会严重影响太空飞行期间的运动表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stressors affect human motor timing during spaceflight.

Crewed outer-space missions require adequate motor capacity among astronauts, whose sensorimotor system is disturbed by microgravity. Stressors other than microgravity, e.g., sleep loss, confinement, and high workload, characterize the living experience in space and potentially affect motor performance. However, the evidence of these stressors remains elusive. We recruited twelve taikonauts from the China Space Station to conduct a motor timing task that minimized the effect of microgravity on motor performance. Participants showed a remarkable increase in motor timing variance during spaceflight, compared to their pre- and post-flight performance and that of ground controls. Model-based analysis revealed that their timing deficits were driven by increased central noise instead of impaired motor execution. Our study provides evidence that nonspecific stressors can profoundly affect motor performance during spaceflight.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
期刊最新文献
Stressors affect human motor timing during spaceflight. Development and characterization of a low intensity vibrational system for microgravity studies. Challenges for the human immune system after leaving Earth. Retinal blood vessel diameter changes with 60-day head-down bedrest are unaffected by antioxidant nutritional cocktail. Articular cartilage loss is an unmitigated risk of human spaceflight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1