{"title":"肿瘤抗药性的来龙去脉","authors":"Michael Attwaters","doi":"10.1038/s41575-024-01027-7","DOIUrl":null,"url":null,"abstract":"<p>New research published in <i>Science Translational Medicine</i> identifies an interplay between tumour-intrinsic and tumour-extrinsic factors that drive resistance to treatment in pancreatic ductal adenocarcinoma (PDAC). The findings provide the rationale for combined therapies that target both oncogenic signalling and the tumour microenvironment to overcome PDAC drug resistance.</p><p>Inhibitors of the RAS–MAPK pathway hold great promise as a therapeutic strategy for PDAC. However, patients rapidly develop drug resistance, explained in part by upregulation of members of the receptor tyrosine kinase family. The researchers found that the combination of RAS–MAPK inhibitors with inhibitors of focal adhesion kinase (FAK) — a non-receptor tyrosine kinase — reduced tumour growth and increased survival in several mouse models of PDAC to a greater extent than either therapy alone. Single-cell RNA sequencing and cell culture experiments revealed that cancer-associated fibroblasts in the tumour microenvironment are activated by FAK and impair the downregulation of MYC by RAS–MAPK inhibition in PDAC cells, resulting in drug resistance. “This identifies cancer-associated fibroblasts as a novel therapeutic target for overcoming RAS pathway resistance,” explains author Gregory Beatty.</p>","PeriodicalId":18793,"journal":{"name":"Nature Reviews Gastroenterology &Hepatology","volume":"19 1","pages":""},"PeriodicalIF":45.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ins and outs of tumour resistance\",\"authors\":\"Michael Attwaters\",\"doi\":\"10.1038/s41575-024-01027-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>New research published in <i>Science Translational Medicine</i> identifies an interplay between tumour-intrinsic and tumour-extrinsic factors that drive resistance to treatment in pancreatic ductal adenocarcinoma (PDAC). The findings provide the rationale for combined therapies that target both oncogenic signalling and the tumour microenvironment to overcome PDAC drug resistance.</p><p>Inhibitors of the RAS–MAPK pathway hold great promise as a therapeutic strategy for PDAC. However, patients rapidly develop drug resistance, explained in part by upregulation of members of the receptor tyrosine kinase family. The researchers found that the combination of RAS–MAPK inhibitors with inhibitors of focal adhesion kinase (FAK) — a non-receptor tyrosine kinase — reduced tumour growth and increased survival in several mouse models of PDAC to a greater extent than either therapy alone. Single-cell RNA sequencing and cell culture experiments revealed that cancer-associated fibroblasts in the tumour microenvironment are activated by FAK and impair the downregulation of MYC by RAS–MAPK inhibition in PDAC cells, resulting in drug resistance. “This identifies cancer-associated fibroblasts as a novel therapeutic target for overcoming RAS pathway resistance,” explains author Gregory Beatty.</p>\",\"PeriodicalId\":18793,\"journal\":{\"name\":\"Nature Reviews Gastroenterology &Hepatology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":45.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Gastroenterology &Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41575-024-01027-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Gastroenterology &Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41575-024-01027-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
New research published in Science Translational Medicine identifies an interplay between tumour-intrinsic and tumour-extrinsic factors that drive resistance to treatment in pancreatic ductal adenocarcinoma (PDAC). The findings provide the rationale for combined therapies that target both oncogenic signalling and the tumour microenvironment to overcome PDAC drug resistance.
Inhibitors of the RAS–MAPK pathway hold great promise as a therapeutic strategy for PDAC. However, patients rapidly develop drug resistance, explained in part by upregulation of members of the receptor tyrosine kinase family. The researchers found that the combination of RAS–MAPK inhibitors with inhibitors of focal adhesion kinase (FAK) — a non-receptor tyrosine kinase — reduced tumour growth and increased survival in several mouse models of PDAC to a greater extent than either therapy alone. Single-cell RNA sequencing and cell culture experiments revealed that cancer-associated fibroblasts in the tumour microenvironment are activated by FAK and impair the downregulation of MYC by RAS–MAPK inhibition in PDAC cells, resulting in drug resistance. “This identifies cancer-associated fibroblasts as a novel therapeutic target for overcoming RAS pathway resistance,” explains author Gregory Beatty.
期刊介绍:
Nature Reviews Gastroenterology & Hepatology aims to serve as the leading resource for Reviews and commentaries within the scientific and medical communities it caters to. The journal strives to maintain authority, accessibility, and clarity in its published articles, which are complemented by easily understandable figures, tables, and other display items. Dedicated to providing exceptional service to authors, referees, and readers, the editorial team works diligently to maximize the usefulness and impact of each publication.
The journal encompasses a wide range of content types, including Research Highlights, News & Views, Comments, Reviews, Perspectives, and Consensus Statements, all pertinent to gastroenterologists and hepatologists. With its broad scope, Nature Reviews Gastroenterology & Hepatology ensures that its articles reach a diverse audience, aiming for the widest possible dissemination of valuable information.
Nature Reviews Gastroenterology & Hepatology is part of the Nature Reviews portfolio of journals.