{"title":"HBA基因的变异通过影响藏绵羊的氧气转移,促进了其对高海拔缺氧的适应性","authors":"Pengfei Zhao, Xiong Ma, Jianming Ren, Lan Zhang, Yunxin Min, Chunyang Li, Yaoyao Lu, Ying Ma, Mingjie Hou, Hui Jia","doi":"10.1186/s12983-024-00551-1","DOIUrl":null,"url":null,"abstract":"Tibetan sheep are indigenous to the Qinghai-Xizang Plateau. Owing to the harsh hypoxic environment in this plateau, the hemoglobin (Hb) protein in Tibetan sheep has undergone adaptive changes over time. Hb is primarily responsible for transporting O2 and CO2 between the lungs and other tissues of the body. The α subunit of Hb, encoded by the HBA gene, is a crucial component of the protein. However, whether variations in the HBA gene sequence affect the adaptation of Tibetan sheep to high-altitude hypoxia remains unclear. In this study, we sequenced the HBA gene and identified three single nucleotide polymorphisms (SNPs). These SNPs were genotyped in Tibetan and Hu sheep using Kompetitive Allele-Specific PCR (KASP). The results showed that the frequencies of the AT genotype and H1H2 haplotype were higher in Tibetan sheep than in Hu sheep. Individuals with the AT genotype exhibited higher P50 levels, whereas those with the H1H2 haplotype exhibited lower PO2 and SaO2 levels. The higher P50 levels indicated that O2 was more readily released from oxygenated Hb into the tissues, with the lower PO2 and SaO2 levels facilitating this process. These findings indicate that variations in the HBA gene sequence contribute to enhancing O2 transfer efficiency in Tibetan sheep.","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations in HBA gene contribute to high-altitude hypoxia adaptation via affected O2 transfer in Tibetan sheep\",\"authors\":\"Pengfei Zhao, Xiong Ma, Jianming Ren, Lan Zhang, Yunxin Min, Chunyang Li, Yaoyao Lu, Ying Ma, Mingjie Hou, Hui Jia\",\"doi\":\"10.1186/s12983-024-00551-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tibetan sheep are indigenous to the Qinghai-Xizang Plateau. Owing to the harsh hypoxic environment in this plateau, the hemoglobin (Hb) protein in Tibetan sheep has undergone adaptive changes over time. Hb is primarily responsible for transporting O2 and CO2 between the lungs and other tissues of the body. The α subunit of Hb, encoded by the HBA gene, is a crucial component of the protein. However, whether variations in the HBA gene sequence affect the adaptation of Tibetan sheep to high-altitude hypoxia remains unclear. In this study, we sequenced the HBA gene and identified three single nucleotide polymorphisms (SNPs). These SNPs were genotyped in Tibetan and Hu sheep using Kompetitive Allele-Specific PCR (KASP). The results showed that the frequencies of the AT genotype and H1H2 haplotype were higher in Tibetan sheep than in Hu sheep. Individuals with the AT genotype exhibited higher P50 levels, whereas those with the H1H2 haplotype exhibited lower PO2 and SaO2 levels. The higher P50 levels indicated that O2 was more readily released from oxygenated Hb into the tissues, with the lower PO2 and SaO2 levels facilitating this process. These findings indicate that variations in the HBA gene sequence contribute to enhancing O2 transfer efficiency in Tibetan sheep.\",\"PeriodicalId\":55142,\"journal\":{\"name\":\"Frontiers in Zoology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12983-024-00551-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-024-00551-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Variations in HBA gene contribute to high-altitude hypoxia adaptation via affected O2 transfer in Tibetan sheep
Tibetan sheep are indigenous to the Qinghai-Xizang Plateau. Owing to the harsh hypoxic environment in this plateau, the hemoglobin (Hb) protein in Tibetan sheep has undergone adaptive changes over time. Hb is primarily responsible for transporting O2 and CO2 between the lungs and other tissues of the body. The α subunit of Hb, encoded by the HBA gene, is a crucial component of the protein. However, whether variations in the HBA gene sequence affect the adaptation of Tibetan sheep to high-altitude hypoxia remains unclear. In this study, we sequenced the HBA gene and identified three single nucleotide polymorphisms (SNPs). These SNPs were genotyped in Tibetan and Hu sheep using Kompetitive Allele-Specific PCR (KASP). The results showed that the frequencies of the AT genotype and H1H2 haplotype were higher in Tibetan sheep than in Hu sheep. Individuals with the AT genotype exhibited higher P50 levels, whereas those with the H1H2 haplotype exhibited lower PO2 and SaO2 levels. The higher P50 levels indicated that O2 was more readily released from oxygenated Hb into the tissues, with the lower PO2 and SaO2 levels facilitating this process. These findings indicate that variations in the HBA gene sequence contribute to enhancing O2 transfer efficiency in Tibetan sheep.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.