多功能中间膜为高度可逆的锌离子电池提供了稳健的界面隧道环境

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-11-22 DOI:10.1016/j.actamat.2024.120588
Yupeng Dang, Feng Zhu, Dongxu Wang, Shihua Yu, Yen Wei, Dandan Han
{"title":"多功能中间膜为高度可逆的锌离子电池提供了稳健的界面隧道环境","authors":"Yupeng Dang, Feng Zhu, Dongxu Wang, Shihua Yu, Yen Wei, Dandan Han","doi":"10.1016/j.actamat.2024.120588","DOIUrl":null,"url":null,"abstract":"Intercalation chemistry/engineering has attracted much attention in the development of electrochemical energy storage. This study employs a green synthesis method to insert cetyltrimethylammonium bromide (CTAB) into Cu<sub>2-x</sub>Se at room temperature, thereby producing a Cu<sub>2-x</sub>Se doped material with an expanded interlayer spacing and a nanoplate array structure. Reversible insertion/extraction of Zn<sup>2+</sup> in Cu<sub>2-x</sub>Se-CTAB is facilitated through an intercalation reaction mechanism, as evidenced by ex situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy measurements (XPS). Moreover, the CTAB adsorbed on the surface of the zinc anode can regulate the deposition of Zn<sup>2+</sup> and inhibit the formation of dendrites. Benefiting from the above advantages, Cu<sub>2-x</sub>Se-CTAB shows a high specific capacity of 661.4 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> as an electrode material for zinc ion batteries, delivered an extraordinary rate capability of 230.2 mAh·g<sup>−1</sup> at 3 A·g<sup>−1</sup> and excellent cycling stability. Theoretical calculations further demonstrate that the incorporation of CTAB diminishes the electrostatic repulsion between zinc ions and the matrix, facilitating rapid diffusion kinetics of zinc ions, and effectively mitigating the dissolution and volume expansion of the cathode. In addition, a Zn||Cu<sub>2-x</sub>Se-CTAB pouch cell has been assembled, delivering a high capacity of 176 mAh·g<sup>−1</sup> at 1.0 A·g<sup>−1</sup> after 600 cycles and exhibiting a superior long cycling stability. This work highlights the potential of CTAB as a promising solution, providing new opportunities for the development of high-performance rechargeable ZIBs.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"70 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional interlayer provides a robust interfacial tunnel environment for highly reversible zinc-ion batteries\",\"authors\":\"Yupeng Dang, Feng Zhu, Dongxu Wang, Shihua Yu, Yen Wei, Dandan Han\",\"doi\":\"10.1016/j.actamat.2024.120588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intercalation chemistry/engineering has attracted much attention in the development of electrochemical energy storage. This study employs a green synthesis method to insert cetyltrimethylammonium bromide (CTAB) into Cu<sub>2-x</sub>Se at room temperature, thereby producing a Cu<sub>2-x</sub>Se doped material with an expanded interlayer spacing and a nanoplate array structure. Reversible insertion/extraction of Zn<sup>2+</sup> in Cu<sub>2-x</sub>Se-CTAB is facilitated through an intercalation reaction mechanism, as evidenced by ex situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy measurements (XPS). Moreover, the CTAB adsorbed on the surface of the zinc anode can regulate the deposition of Zn<sup>2+</sup> and inhibit the formation of dendrites. Benefiting from the above advantages, Cu<sub>2-x</sub>Se-CTAB shows a high specific capacity of 661.4 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> as an electrode material for zinc ion batteries, delivered an extraordinary rate capability of 230.2 mAh·g<sup>−1</sup> at 3 A·g<sup>−1</sup> and excellent cycling stability. Theoretical calculations further demonstrate that the incorporation of CTAB diminishes the electrostatic repulsion between zinc ions and the matrix, facilitating rapid diffusion kinetics of zinc ions, and effectively mitigating the dissolution and volume expansion of the cathode. In addition, a Zn||Cu<sub>2-x</sub>Se-CTAB pouch cell has been assembled, delivering a high capacity of 176 mAh·g<sup>−1</sup> at 1.0 A·g<sup>−1</sup> after 600 cycles and exhibiting a superior long cycling stability. This work highlights the potential of CTAB as a promising solution, providing new opportunities for the development of high-performance rechargeable ZIBs.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2024.120588\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120588","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

夹层化学/工程在电化学储能的发展中备受关注。本研究采用一种绿色合成方法,在室温下将十六烷基三甲基溴化铵(CTAB)插入 Cu2-xSe 中,从而制备出一种具有扩大层间距和纳米板阵列结构的 Cu2-xSe 掺杂材料。原位 X 射线衍射 (XRD) 和原位 X 射线光电子能谱测量 (XPS) 证明,Cu2-xSe-CTAB 中 Zn2+ 的可逆插入/萃取是通过插层反应机制实现的。此外,吸附在锌阳极表面的 CTAB 可以调节 Zn2+ 的沉积,抑制枝晶的形成。得益于上述优点,作为锌离子电池的电极材料,Cu2-xSe-CTAB 在 0.1 A-g-1 的条件下显示出 661.4 mAh-g-1 的高比容量,在 3 A-g-1 的条件下具有 230.2 mAh-g-1 的超常速率能力和出色的循环稳定性。理论计算进一步证明,CTAB 的加入减弱了锌离子与基体之间的静电排斥,促进了锌离子的快速扩散动力学,有效缓解了阴极的溶解和体积膨胀。此外,我们还组装了一个 Zn||Cu2-xSe-CTAB 袋式电池,在 1.0 A-g-1 的条件下循环 600 次后,电池容量高达 176 mAh-g-1,并表现出卓越的长循环稳定性。这项工作凸显了 CTAB 作为一种有前途的解决方案的潜力,为开发高性能可充电 ZIB 提供了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional interlayer provides a robust interfacial tunnel environment for highly reversible zinc-ion batteries
Intercalation chemistry/engineering has attracted much attention in the development of electrochemical energy storage. This study employs a green synthesis method to insert cetyltrimethylammonium bromide (CTAB) into Cu2-xSe at room temperature, thereby producing a Cu2-xSe doped material with an expanded interlayer spacing and a nanoplate array structure. Reversible insertion/extraction of Zn2+ in Cu2-xSe-CTAB is facilitated through an intercalation reaction mechanism, as evidenced by ex situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy measurements (XPS). Moreover, the CTAB adsorbed on the surface of the zinc anode can regulate the deposition of Zn2+ and inhibit the formation of dendrites. Benefiting from the above advantages, Cu2-xSe-CTAB shows a high specific capacity of 661.4 mAh·g−1 at 0.1 A·g−1 as an electrode material for zinc ion batteries, delivered an extraordinary rate capability of 230.2 mAh·g−1 at 3 A·g−1 and excellent cycling stability. Theoretical calculations further demonstrate that the incorporation of CTAB diminishes the electrostatic repulsion between zinc ions and the matrix, facilitating rapid diffusion kinetics of zinc ions, and effectively mitigating the dissolution and volume expansion of the cathode. In addition, a Zn||Cu2-xSe-CTAB pouch cell has been assembled, delivering a high capacity of 176 mAh·g−1 at 1.0 A·g−1 after 600 cycles and exhibiting a superior long cycling stability. This work highlights the potential of CTAB as a promising solution, providing new opportunities for the development of high-performance rechargeable ZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Investigation of electric field-induced phase transitions in unfilled tungsten bronze relaxor ceramics designed by the high entropy concept A novel approach to control the thermal/stress-induced products of body-centered cubic titanium alloys in terms of specific orientation moduli Ingeniously Controlling Interface Diffusion Endows the Skutterudite Thermoelectric Device with Ultra-High Service Stability Disordered turbostratic nanodomain-dominated hard carbon for fast and ultra-stable sodium ion storage Structural changes during wake-up and polarization switching in a ferroelectric Hf0.5Zr0.5O2 film
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1