{"title":"SDKT:针对多变量时间序列分类任务的相似领域知识转移","authors":"Jiaye Wen, Wenan Zhou","doi":"10.1111/coin.70008","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multivariate time series data classification has a wide range of applications in reality. With rapid development of deep learning, convolutional networks are widely used in this task and have achieved the current best performance. However, due to high difficulty and cost of collecting this type of data, labeled data is still scarce. In some tasks, the model shows overfitting, resulting in relatively poor classification performance. In order to improve the classification performance under such situation, we proposed a novel classification method based on transfer learning—similar domain knowledge transfer (call SDKT for short). Firstly, we designed a multivariate time series domain distance calculation method (call MTSDDC for short), which helped selecting the source domain that is most similar to target domain; Secondly, we used ResNet as a pre-trained classifier, transferred the parameters of the similar domain network to the target domain network and continue to fine-tune the parameters. To verify our method, we conducted experiments on several public datasets. Our study has also shown that the transfer effect from the source domain to the target domain is highly negatively correlated with the distance between them, with an average Pearson coefficient of −0.78. For the transfer of most similar source domain, compared to the ResNet model without transfer and the current best model, the average accuracy improvements on the datasets we used are 4.01% and 1.46% respectively.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDKT: Similar Domain Knowledge Transfer for Multivariate Time Series Classification Tasks\",\"authors\":\"Jiaye Wen, Wenan Zhou\",\"doi\":\"10.1111/coin.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Multivariate time series data classification has a wide range of applications in reality. With rapid development of deep learning, convolutional networks are widely used in this task and have achieved the current best performance. However, due to high difficulty and cost of collecting this type of data, labeled data is still scarce. In some tasks, the model shows overfitting, resulting in relatively poor classification performance. In order to improve the classification performance under such situation, we proposed a novel classification method based on transfer learning—similar domain knowledge transfer (call SDKT for short). Firstly, we designed a multivariate time series domain distance calculation method (call MTSDDC for short), which helped selecting the source domain that is most similar to target domain; Secondly, we used ResNet as a pre-trained classifier, transferred the parameters of the similar domain network to the target domain network and continue to fine-tune the parameters. To verify our method, we conducted experiments on several public datasets. Our study has also shown that the transfer effect from the source domain to the target domain is highly negatively correlated with the distance between them, with an average Pearson coefficient of −0.78. For the transfer of most similar source domain, compared to the ResNet model without transfer and the current best model, the average accuracy improvements on the datasets we used are 4.01% and 1.46% respectively.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"40 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70008\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
SDKT: Similar Domain Knowledge Transfer for Multivariate Time Series Classification Tasks
Multivariate time series data classification has a wide range of applications in reality. With rapid development of deep learning, convolutional networks are widely used in this task and have achieved the current best performance. However, due to high difficulty and cost of collecting this type of data, labeled data is still scarce. In some tasks, the model shows overfitting, resulting in relatively poor classification performance. In order to improve the classification performance under such situation, we proposed a novel classification method based on transfer learning—similar domain knowledge transfer (call SDKT for short). Firstly, we designed a multivariate time series domain distance calculation method (call MTSDDC for short), which helped selecting the source domain that is most similar to target domain; Secondly, we used ResNet as a pre-trained classifier, transferred the parameters of the similar domain network to the target domain network and continue to fine-tune the parameters. To verify our method, we conducted experiments on several public datasets. Our study has also shown that the transfer effect from the source domain to the target domain is highly negatively correlated with the distance between them, with an average Pearson coefficient of −0.78. For the transfer of most similar source domain, compared to the ResNet model without transfer and the current best model, the average accuracy improvements on the datasets we used are 4.01% and 1.46% respectively.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.