Tianxing Jing , Jin Yang , Jilong Pan , Xiaoning Liu , Xinyi Yang , Muhammad Farhan , Honghua Su , Xiaoyan Ma , Shuai Zhang
{"title":"近乎完整的基因组揭示了棉瓜蚜 Aphis gossypii 的种群进化。","authors":"Tianxing Jing , Jin Yang , Jilong Pan , Xiaoning Liu , Xinyi Yang , Muhammad Farhan , Honghua Su , Xiaoyan Ma , Shuai Zhang","doi":"10.1016/j.ibmb.2024.104215","DOIUrl":null,"url":null,"abstract":"<div><div>The cotton-melon aphid <em>Aphis gossypii</em> Glover is a severe pest worldwide. Interhaplotype genomic variation can be used as a starting point to analyze the adaptability of <em>Ap. gossypii</em>. In this study, we utilized long-read PacBio HiFi sequencing and HiC scaffolding techniques to assemble a near telomere-to-telomere gap-free genome assembly of Hap4. The assembly had two gaps totaling 321.24 Mb. We characterized five telomeric repetitive regions (GGTTA)<sub>n</sub>, including the four found at the 3′ end of the chromosomes, and obtained new structural information about the telomeres. Due to the improved sequencing technology, we also identified more than 55.03 Mb of repetitive DNA in the genome assembly of Hap4, which contributed significantly to the increase in genome size compared to that of Hap1 and Hap3. Most of the additional repetitive DNA content was located on the X chromosome, and the tandem repeat sequence occupied 16.8% of the X chromosome length. The Hap4 assembly showed that the X chromosome exhibited a greater abundance of AT-rich satDNA arrays (11 satDNA arrays longer than 100 kb) than that observed in the autosomes (A1 and A2 harboured 3 and 1 satDNA arrays). We detected presence-absence variations, insertions, and deletions events between Hap1, Hap3, and Hap4 <em>Ap. gossypii</em>, which had significant effects on gene expression. Additionally, we identified a male-specific glyceraldehyde-3-phosphate dehydrogenase of fungal origin in all strains of <em>Ap. gossypii</em>. This comprehensive genome assembly provides valuable insights into the structural characteristics of highly repetitive regions and allows comparative genomic analyses that facilitate our understanding of <em>Ap. gossypii</em>'s adaptation and diversification.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"176 ","pages":"Article 104215"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A near-complete genome reveals the population evolution of the cotton-melon aphid Aphis gossypii\",\"authors\":\"Tianxing Jing , Jin Yang , Jilong Pan , Xiaoning Liu , Xinyi Yang , Muhammad Farhan , Honghua Su , Xiaoyan Ma , Shuai Zhang\",\"doi\":\"10.1016/j.ibmb.2024.104215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cotton-melon aphid <em>Aphis gossypii</em> Glover is a severe pest worldwide. Interhaplotype genomic variation can be used as a starting point to analyze the adaptability of <em>Ap. gossypii</em>. In this study, we utilized long-read PacBio HiFi sequencing and HiC scaffolding techniques to assemble a near telomere-to-telomere gap-free genome assembly of Hap4. The assembly had two gaps totaling 321.24 Mb. We characterized five telomeric repetitive regions (GGTTA)<sub>n</sub>, including the four found at the 3′ end of the chromosomes, and obtained new structural information about the telomeres. Due to the improved sequencing technology, we also identified more than 55.03 Mb of repetitive DNA in the genome assembly of Hap4, which contributed significantly to the increase in genome size compared to that of Hap1 and Hap3. Most of the additional repetitive DNA content was located on the X chromosome, and the tandem repeat sequence occupied 16.8% of the X chromosome length. The Hap4 assembly showed that the X chromosome exhibited a greater abundance of AT-rich satDNA arrays (11 satDNA arrays longer than 100 kb) than that observed in the autosomes (A1 and A2 harboured 3 and 1 satDNA arrays). We detected presence-absence variations, insertions, and deletions events between Hap1, Hap3, and Hap4 <em>Ap. gossypii</em>, which had significant effects on gene expression. Additionally, we identified a male-specific glyceraldehyde-3-phosphate dehydrogenase of fungal origin in all strains of <em>Ap. gossypii</em>. This comprehensive genome assembly provides valuable insights into the structural characteristics of highly repetitive regions and allows comparative genomic analyses that facilitate our understanding of <em>Ap. gossypii</em>'s adaptation and diversification.</div></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"176 \",\"pages\":\"Article 104215\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965174824001462\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824001462","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A near-complete genome reveals the population evolution of the cotton-melon aphid Aphis gossypii
The cotton-melon aphid Aphis gossypii Glover is a severe pest worldwide. Interhaplotype genomic variation can be used as a starting point to analyze the adaptability of Ap. gossypii. In this study, we utilized long-read PacBio HiFi sequencing and HiC scaffolding techniques to assemble a near telomere-to-telomere gap-free genome assembly of Hap4. The assembly had two gaps totaling 321.24 Mb. We characterized five telomeric repetitive regions (GGTTA)n, including the four found at the 3′ end of the chromosomes, and obtained new structural information about the telomeres. Due to the improved sequencing technology, we also identified more than 55.03 Mb of repetitive DNA in the genome assembly of Hap4, which contributed significantly to the increase in genome size compared to that of Hap1 and Hap3. Most of the additional repetitive DNA content was located on the X chromosome, and the tandem repeat sequence occupied 16.8% of the X chromosome length. The Hap4 assembly showed that the X chromosome exhibited a greater abundance of AT-rich satDNA arrays (11 satDNA arrays longer than 100 kb) than that observed in the autosomes (A1 and A2 harboured 3 and 1 satDNA arrays). We detected presence-absence variations, insertions, and deletions events between Hap1, Hap3, and Hap4 Ap. gossypii, which had significant effects on gene expression. Additionally, we identified a male-specific glyceraldehyde-3-phosphate dehydrogenase of fungal origin in all strains of Ap. gossypii. This comprehensive genome assembly provides valuable insights into the structural characteristics of highly repetitive regions and allows comparative genomic analyses that facilitate our understanding of Ap. gossypii's adaptation and diversification.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.