Daniel Monnens, José R López, Erik McCoy, Bishal G Tamang, Aaron J Lorenz, Walid Sadok
{"title":"在制图群体中对大豆(Glycine max)蒸腾作用对大气干燥上升的响应曲线进行高通量表型分析。","authors":"Daniel Monnens, José R López, Erik McCoy, Bishal G Tamang, Aaron J Lorenz, Walid Sadok","doi":"10.1071/FP23281","DOIUrl":null,"url":null,"abstract":"<p><p>In soybean (Glycine max ), limiting whole-plant transpiration rate (TR) response to increasing vapor pressure deficit (VPD) has been associated with the 'slow-wilting' phenotype and with water-conservation enabling higher yields under terminal drought. Despite the promise of this trait, it is still unknown whether it has a genetic basis in soybean, a challenge limiting the prospects of breeding climate-resilient varieties. Here, we present the results of a first attempt at a high-throughput phenotyping of TR and stomatal conductance response curves to increasing VPD conducted on a soybean mapping population consisting of 140 recombinant inbred lines (RIL). This effort was conducted over two consecutive years, using a controlled-environment, gravimetric phenotyping platform that enabled characterizing 900 plants for these responses, yielding regression parameters (R 2 from 0.92 to 0.99) that were used for genetic mapping. Several quantitative trait loci (QTL) were identified for these parameters on chromosomes (Ch) 4, 6, and 10, including a VPD-conditional QTL on Ch 4 and a 'constitutive' QTL controlling all parameters on Ch 6. This study demonstrated for the first time that canopy water use in response to rising VPD has a genetic basis in soybean, opening novel avenues for identifying alleles enabling water conservation under current and future climate scenarios.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput phenotyping of soybean (<i>Glycine max</i>) transpiration response curves to rising atmospheric drying in a mapping population.\",\"authors\":\"Daniel Monnens, José R López, Erik McCoy, Bishal G Tamang, Aaron J Lorenz, Walid Sadok\",\"doi\":\"10.1071/FP23281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In soybean (Glycine max ), limiting whole-plant transpiration rate (TR) response to increasing vapor pressure deficit (VPD) has been associated with the 'slow-wilting' phenotype and with water-conservation enabling higher yields under terminal drought. Despite the promise of this trait, it is still unknown whether it has a genetic basis in soybean, a challenge limiting the prospects of breeding climate-resilient varieties. Here, we present the results of a first attempt at a high-throughput phenotyping of TR and stomatal conductance response curves to increasing VPD conducted on a soybean mapping population consisting of 140 recombinant inbred lines (RIL). This effort was conducted over two consecutive years, using a controlled-environment, gravimetric phenotyping platform that enabled characterizing 900 plants for these responses, yielding regression parameters (R 2 from 0.92 to 0.99) that were used for genetic mapping. Several quantitative trait loci (QTL) were identified for these parameters on chromosomes (Ch) 4, 6, and 10, including a VPD-conditional QTL on Ch 4 and a 'constitutive' QTL controlling all parameters on Ch 6. This study demonstrated for the first time that canopy water use in response to rising VPD has a genetic basis in soybean, opening novel avenues for identifying alleles enabling water conservation under current and future climate scenarios.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"51 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP23281\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23281","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
High-throughput phenotyping of soybean (Glycine max) transpiration response curves to rising atmospheric drying in a mapping population.
In soybean (Glycine max ), limiting whole-plant transpiration rate (TR) response to increasing vapor pressure deficit (VPD) has been associated with the 'slow-wilting' phenotype and with water-conservation enabling higher yields under terminal drought. Despite the promise of this trait, it is still unknown whether it has a genetic basis in soybean, a challenge limiting the prospects of breeding climate-resilient varieties. Here, we present the results of a first attempt at a high-throughput phenotyping of TR and stomatal conductance response curves to increasing VPD conducted on a soybean mapping population consisting of 140 recombinant inbred lines (RIL). This effort was conducted over two consecutive years, using a controlled-environment, gravimetric phenotyping platform that enabled characterizing 900 plants for these responses, yielding regression parameters (R 2 from 0.92 to 0.99) that were used for genetic mapping. Several quantitative trait loci (QTL) were identified for these parameters on chromosomes (Ch) 4, 6, and 10, including a VPD-conditional QTL on Ch 4 and a 'constitutive' QTL controlling all parameters on Ch 6. This study demonstrated for the first time that canopy water use in response to rising VPD has a genetic basis in soybean, opening novel avenues for identifying alleles enabling water conservation under current and future climate scenarios.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.