{"title":"在缺血性中风期间,RIP3 通过促进中性粒细胞浸润来加重神经炎症。","authors":"Baiyu Li, Zexia Ling, Yanyan Wang, Yinhua Xing","doi":"10.1159/000542571","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neutrophil infiltration is responsible for the neuroinflammation during an ischemic stroke. Here, we explored the role of receptor-interacting protein kinase 3 (RIP3) in neutrophil infiltration during an ischemic stroke.</p><p><strong>Methods: </strong>The rat middle cerebral artery occlusion (MCAO) model was utilized to identify pivotal proteins involved in neutrophil infiltration during an ischemic stroke. Neutrophils were isolated from the peripheral blood of mice, and a co-immunoprecipitation (co-IP) assay was performed to identify the proteins that interact with RIP3.</p><p><strong>Results: </strong>The rat MCAO model was successfully established. Myeloperoxidase (MPO) was significantly up-regulated in the MCAO group, indicating the presence of neutrophil infiltration. RIP3 protein level exhibited a similar trend to MPO protein level, suggesting that neuroinflammation might be partly activated by RIP3 through the promotion of neutrophil infiltration. Co-immunoprecipitation (co-IP) and mass spectrometry (MS) analyses suggested that RIP3 facilitated neutrophil infiltration partly by affecting protein kinases (Rock1 and Prkaca) downstream of RIP3, and the interaction between RIP3 and Rock1 or Prkaca was validated by IF and co-IP assays.</p><p><strong>Conclusion: </strong>In this study, it was observed that RIP3 affects neutrophil infiltration, a critical phenomenon associated with neuronal injury during ischemic stroke, partly by the modulation of downstream proteins such as Rock1 and Prkaca.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"1-17"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIP3 augments neuroinflammation by facilitating neutrophil infiltration during an ischemic stroke.\",\"authors\":\"Baiyu Li, Zexia Ling, Yanyan Wang, Yinhua Xing\",\"doi\":\"10.1159/000542571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Neutrophil infiltration is responsible for the neuroinflammation during an ischemic stroke. Here, we explored the role of receptor-interacting protein kinase 3 (RIP3) in neutrophil infiltration during an ischemic stroke.</p><p><strong>Methods: </strong>The rat middle cerebral artery occlusion (MCAO) model was utilized to identify pivotal proteins involved in neutrophil infiltration during an ischemic stroke. Neutrophils were isolated from the peripheral blood of mice, and a co-immunoprecipitation (co-IP) assay was performed to identify the proteins that interact with RIP3.</p><p><strong>Results: </strong>The rat MCAO model was successfully established. Myeloperoxidase (MPO) was significantly up-regulated in the MCAO group, indicating the presence of neutrophil infiltration. RIP3 protein level exhibited a similar trend to MPO protein level, suggesting that neuroinflammation might be partly activated by RIP3 through the promotion of neutrophil infiltration. Co-immunoprecipitation (co-IP) and mass spectrometry (MS) analyses suggested that RIP3 facilitated neutrophil infiltration partly by affecting protein kinases (Rock1 and Prkaca) downstream of RIP3, and the interaction between RIP3 and Rock1 or Prkaca was validated by IF and co-IP assays.</p><p><strong>Conclusion: </strong>In this study, it was observed that RIP3 affects neutrophil infiltration, a critical phenomenon associated with neuronal injury during ischemic stroke, partly by the modulation of downstream proteins such as Rock1 and Prkaca.</p>\",\"PeriodicalId\":17530,\"journal\":{\"name\":\"Journal of Vascular Research\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000542571\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542571","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
RIP3 augments neuroinflammation by facilitating neutrophil infiltration during an ischemic stroke.
Introduction: Neutrophil infiltration is responsible for the neuroinflammation during an ischemic stroke. Here, we explored the role of receptor-interacting protein kinase 3 (RIP3) in neutrophil infiltration during an ischemic stroke.
Methods: The rat middle cerebral artery occlusion (MCAO) model was utilized to identify pivotal proteins involved in neutrophil infiltration during an ischemic stroke. Neutrophils were isolated from the peripheral blood of mice, and a co-immunoprecipitation (co-IP) assay was performed to identify the proteins that interact with RIP3.
Results: The rat MCAO model was successfully established. Myeloperoxidase (MPO) was significantly up-regulated in the MCAO group, indicating the presence of neutrophil infiltration. RIP3 protein level exhibited a similar trend to MPO protein level, suggesting that neuroinflammation might be partly activated by RIP3 through the promotion of neutrophil infiltration. Co-immunoprecipitation (co-IP) and mass spectrometry (MS) analyses suggested that RIP3 facilitated neutrophil infiltration partly by affecting protein kinases (Rock1 and Prkaca) downstream of RIP3, and the interaction between RIP3 and Rock1 or Prkaca was validated by IF and co-IP assays.
Conclusion: In this study, it was observed that RIP3 affects neutrophil infiltration, a critical phenomenon associated with neuronal injury during ischemic stroke, partly by the modulation of downstream proteins such as Rock1 and Prkaca.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.