通过用户与头像的联系,机器学习在游戏障碍中的应用:向概念和方法的清晰化迈出了一步。

IF 6.6 1区 医学 Q1 PSYCHIATRY Journal of Behavioral Addictions Pub Date : 2024-11-22 DOI:10.1556/2006.2024.00063
Vasileios Stavropoulos, Maria Prokofieva, Daniel Zarate, Michelle Colder Carras, Rabindra Ratan, Rachel Kowert, Bruno Schivinski, Tyrone L Burleigh, Dylan Poulus, Leila Karimi, Angela Gorman-Alesi, Taylor Brown, Rapson Gomez, Kaiden Hein, Nalin Arachchilage, Mark D Griffiths
{"title":"通过用户与头像的联系,机器学习在游戏障碍中的应用:向概念和方法的清晰化迈出了一步。","authors":"Vasileios Stavropoulos, Maria Prokofieva, Daniel Zarate, Michelle Colder Carras, Rabindra Ratan, Rachel Kowert, Bruno Schivinski, Tyrone L Burleigh, Dylan Poulus, Leila Karimi, Angela Gorman-Alesi, Taylor Brown, Rapson Gomez, Kaiden Hein, Nalin Arachchilage, Mark D Griffiths","doi":"10.1556/2006.2024.00063","DOIUrl":null,"url":null,"abstract":"<p><p>In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.</p>","PeriodicalId":15049,"journal":{"name":"Journal of Behavioral Addictions","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning(s) in gaming disorder through the user-avatar bond: A step towards conceptual and methodological clarity.\",\"authors\":\"Vasileios Stavropoulos, Maria Prokofieva, Daniel Zarate, Michelle Colder Carras, Rabindra Ratan, Rachel Kowert, Bruno Schivinski, Tyrone L Burleigh, Dylan Poulus, Leila Karimi, Angela Gorman-Alesi, Taylor Brown, Rapson Gomez, Kaiden Hein, Nalin Arachchilage, Mark D Griffiths\",\"doi\":\"10.1556/2006.2024.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.</p>\",\"PeriodicalId\":15049,\"journal\":{\"name\":\"Journal of Behavioral Addictions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Behavioral Addictions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1556/2006.2024.00063\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Behavioral Addictions","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1556/2006.2024.00063","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

针对我们的研究,Infanti等人(2024年)的评论提出了以下关键点:(i)在解决游戏障碍(GD)风险时,用户与头像联系的概念化和实用性;(ii)应用于评估GD风险的监督机器学习技术的优化。为了推动这些领域的科学对话和进展,本文旨在:(i) 在更广泛的行为成瘾领域内,提高头像、用户-头像联系和有关游戏障碍(GD)的数字表型概念的清晰度和理解;(ii) 通过在数据拆分前去除数据增强和在编程中实施替代数据不平衡处理方法,比较评估用户-头像联系(UAB)如何预测GD风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning(s) in gaming disorder through the user-avatar bond: A step towards conceptual and methodological clarity.

In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.30
自引率
7.70%
发文量
91
审稿时长
20 weeks
期刊介绍: The aim of Journal of Behavioral Addictions is to create a forum for the scientific information exchange with regard to behavioral addictions. The journal is a broad focused interdisciplinary one that publishes manuscripts on different approaches of non-substance addictions, research reports focusing on the addictive patterns of various behaviors, especially disorders of the impulsive-compulsive spectrum, and also publishes reviews in these topics. Coverage ranges from genetic and neurobiological research through psychological and clinical psychiatric approaches to epidemiological, sociological and anthropological aspects.
期刊最新文献
From active escapism to virtual withdrawal: Validation of the Compensatory-Dissociative Online Gaming scales (C-DOGs). Corrigendum to: Deep learning(s) in gaming disorder through the user-avatar bond: A longitudinal study using machine learning. Machine Learning(s) in gaming disorder through the user-avatar bond: A step towards conceptual and methodological clarity. User-avatar bond as diagnostic indicator for gaming disorder: A word on the side of caution. Long-term changes on behavioral addictions symptoms among adults with attention deficit hyperactivity disorder treated with methylphenidate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1