Chisco:基于脑电图的 BCI 数据集,用于解码想象中的语音。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-21 DOI:10.1038/s41597-024-04114-1
Zihan Zhang, Xiao Ding, Yu Bao, Yi Zhao, Xia Liang, Bing Qin, Ting Liu
{"title":"Chisco:基于脑电图的 BCI 数据集,用于解码想象中的语音。","authors":"Zihan Zhang, Xiao Ding, Yu Bao, Yi Zhao, Xia Liang, Bing Qin, Ting Liu","doi":"10.1038/s41597-024-04114-1","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of deep learning has enabled Brain-Computer Interfaces (BCIs) technology, particularly neural decoding techniques, to achieve higher accuracy and deeper levels of interpretation. Interest in decoding imagined speech has significantly increased because its concept akin to \"mind reading\". However, previous studies on decoding neural language have predominantly focused on brain activity patterns during human reading. The absence of imagined speech electroencephalography (EEG) datasets has constrained further research in this field. We present the Chinese Imagined Speech Corpus (Chisco), including over 20,000 sentences of high-density EEG recordings of imagined speech from healthy adults. Each subject's EEG data exceeds 900 minutes, representing the largest dataset per individual currently available for decoding neural language to date. Furthermore, the experimental stimuli include over 6,000 everyday phrases across 39 semantic categories, covering nearly all aspects of daily language. We believe that Chisco represents a valuable resource for the fields of BCIs, facilitating the development of more user-friendly BCIs.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1265"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chisco: An EEG-based BCI dataset for decoding of imagined speech.\",\"authors\":\"Zihan Zhang, Xiao Ding, Yu Bao, Yi Zhao, Xia Liang, Bing Qin, Ting Liu\",\"doi\":\"10.1038/s41597-024-04114-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid advancement of deep learning has enabled Brain-Computer Interfaces (BCIs) technology, particularly neural decoding techniques, to achieve higher accuracy and deeper levels of interpretation. Interest in decoding imagined speech has significantly increased because its concept akin to \\\"mind reading\\\". However, previous studies on decoding neural language have predominantly focused on brain activity patterns during human reading. The absence of imagined speech electroencephalography (EEG) datasets has constrained further research in this field. We present the Chinese Imagined Speech Corpus (Chisco), including over 20,000 sentences of high-density EEG recordings of imagined speech from healthy adults. Each subject's EEG data exceeds 900 minutes, representing the largest dataset per individual currently available for decoding neural language to date. Furthermore, the experimental stimuli include over 6,000 everyday phrases across 39 semantic categories, covering nearly all aspects of daily language. We believe that Chisco represents a valuable resource for the fields of BCIs, facilitating the development of more user-friendly BCIs.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1265\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04114-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04114-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

深度学习的快速发展使得脑机接口(BCI)技术,尤其是神经解码技术,能够实现更高精度和更深层次的解读。由于想象语音的概念类似于 "读心术",人们对其解码的兴趣大增。然而,以往对神经语言解码的研究主要集中在人类阅读时的大脑活动模式。想象语音脑电图(EEG)数据集的缺乏限制了这一领域的进一步研究。我们提出了中国想象语音语料库(Chisco),其中包括 20,000 多句来自健康成年人的高密度想象语音脑电图记录。每个受试者的脑电图数据都超过 900 分钟,是迄今为止用于解码神经语言的最大单个数据集。此外,实验刺激包括 39 个语义类别的 6000 多个日常短语,几乎涵盖了日常语言的所有方面。我们相信,Chisco 是 BCIs 领域的宝贵资源,有助于开发更多用户友好型 BCIs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chisco: An EEG-based BCI dataset for decoding of imagined speech.

The rapid advancement of deep learning has enabled Brain-Computer Interfaces (BCIs) technology, particularly neural decoding techniques, to achieve higher accuracy and deeper levels of interpretation. Interest in decoding imagined speech has significantly increased because its concept akin to "mind reading". However, previous studies on decoding neural language have predominantly focused on brain activity patterns during human reading. The absence of imagined speech electroencephalography (EEG) datasets has constrained further research in this field. We present the Chinese Imagined Speech Corpus (Chisco), including over 20,000 sentences of high-density EEG recordings of imagined speech from healthy adults. Each subject's EEG data exceeds 900 minutes, representing the largest dataset per individual currently available for decoding neural language to date. Furthermore, the experimental stimuli include over 6,000 everyday phrases across 39 semantic categories, covering nearly all aspects of daily language. We believe that Chisco represents a valuable resource for the fields of BCIs, facilitating the development of more user-friendly BCIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A digital phenotyping dataset for impending panic symptoms: a prospective longitudinal study. Chisco: An EEG-based BCI dataset for decoding of imagined speech. Database of surface water diversion sites and daily withdrawals for the Upper Colorado River Basin, 1980-2022. Dataset of Smartphone-Based Finger Tapping Test. Expanding the genome information on Bacillales for biosynthetic gene cluster discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1