Zihan Zhang, Xiao Ding, Yu Bao, Yi Zhao, Xia Liang, Bing Qin, Ting Liu
{"title":"Chisco:基于脑电图的 BCI 数据集,用于解码想象中的语音。","authors":"Zihan Zhang, Xiao Ding, Yu Bao, Yi Zhao, Xia Liang, Bing Qin, Ting Liu","doi":"10.1038/s41597-024-04114-1","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of deep learning has enabled Brain-Computer Interfaces (BCIs) technology, particularly neural decoding techniques, to achieve higher accuracy and deeper levels of interpretation. Interest in decoding imagined speech has significantly increased because its concept akin to \"mind reading\". However, previous studies on decoding neural language have predominantly focused on brain activity patterns during human reading. The absence of imagined speech electroencephalography (EEG) datasets has constrained further research in this field. We present the Chinese Imagined Speech Corpus (Chisco), including over 20,000 sentences of high-density EEG recordings of imagined speech from healthy adults. Each subject's EEG data exceeds 900 minutes, representing the largest dataset per individual currently available for decoding neural language to date. Furthermore, the experimental stimuli include over 6,000 everyday phrases across 39 semantic categories, covering nearly all aspects of daily language. We believe that Chisco represents a valuable resource for the fields of BCIs, facilitating the development of more user-friendly BCIs.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1265"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chisco: An EEG-based BCI dataset for decoding of imagined speech.\",\"authors\":\"Zihan Zhang, Xiao Ding, Yu Bao, Yi Zhao, Xia Liang, Bing Qin, Ting Liu\",\"doi\":\"10.1038/s41597-024-04114-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid advancement of deep learning has enabled Brain-Computer Interfaces (BCIs) technology, particularly neural decoding techniques, to achieve higher accuracy and deeper levels of interpretation. Interest in decoding imagined speech has significantly increased because its concept akin to \\\"mind reading\\\". However, previous studies on decoding neural language have predominantly focused on brain activity patterns during human reading. The absence of imagined speech electroencephalography (EEG) datasets has constrained further research in this field. We present the Chinese Imagined Speech Corpus (Chisco), including over 20,000 sentences of high-density EEG recordings of imagined speech from healthy adults. Each subject's EEG data exceeds 900 minutes, representing the largest dataset per individual currently available for decoding neural language to date. Furthermore, the experimental stimuli include over 6,000 everyday phrases across 39 semantic categories, covering nearly all aspects of daily language. We believe that Chisco represents a valuable resource for the fields of BCIs, facilitating the development of more user-friendly BCIs.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1265\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04114-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04114-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Chisco: An EEG-based BCI dataset for decoding of imagined speech.
The rapid advancement of deep learning has enabled Brain-Computer Interfaces (BCIs) technology, particularly neural decoding techniques, to achieve higher accuracy and deeper levels of interpretation. Interest in decoding imagined speech has significantly increased because its concept akin to "mind reading". However, previous studies on decoding neural language have predominantly focused on brain activity patterns during human reading. The absence of imagined speech electroencephalography (EEG) datasets has constrained further research in this field. We present the Chinese Imagined Speech Corpus (Chisco), including over 20,000 sentences of high-density EEG recordings of imagined speech from healthy adults. Each subject's EEG data exceeds 900 minutes, representing the largest dataset per individual currently available for decoding neural language to date. Furthermore, the experimental stimuli include over 6,000 everyday phrases across 39 semantic categories, covering nearly all aspects of daily language. We believe that Chisco represents a valuable resource for the fields of BCIs, facilitating the development of more user-friendly BCIs.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.