优化定量光声成像系统:贝叶斯克拉梅-拉奥约束方法。

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Inverse Problems Pub Date : 2024-12-01 Epub Date: 2024-11-20 DOI:10.1088/1361-6420/ad910a
Evan Scope Crafts, Mark A Anastasio, Umberto Villa
{"title":"优化定量光声成像系统:贝叶斯克拉梅-拉奥约束方法。","authors":"Evan Scope Crafts, Mark A Anastasio, Umberto Villa","doi":"10.1088/1361-6420/ad910a","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative photoacoustic computed tomography (qPACT) is an emerging medical imaging modality that carries the promise of high-contrast, fine-resolution imaging of clinically relevant quantities like hemoglobin concentration and blood-oxygen saturation. However, qPACT image reconstruction is governed by a multiphysics, partial differential equation (PDE) based inverse problem that is highly non-linear and severely ill-posed. Compounding the difficulty of the problem is the lack of established design standards for qPACT imaging systems, as there is currently a proliferation of qPACT system designs for various applications and it is unknown which ones are optimal or how to best modify the systems under various design constraints. This work introduces a novel computational approach for the optimal experimental design of qPACT imaging systems based on the Bayesian Cramér-Rao bound (CRB). Our approach incorporates several techniques to address challenges associated with forming the bound in the infinite-dimensional function space setting of qPACT, including priors with trace-class covariance operators and the use of the variational adjoint method to compute derivatives of the log-likelihood function needed in the bound computation. The resulting Bayesian CRB based design metric is computationally efficient and independent of the choice of estimator used to solve the inverse problem. The efficacy of the bound in guiding experimental design was demonstrated in a numerical study of qPACT design schemes under a stylized two-dimensional imaging geometry. To the best of our knowledge, this is the first work to propose Bayesian CRB based design for systems governed by PDEs.</p>","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"40 12","pages":"125012"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing quantitative photoacoustic imaging systems: the Bayesian Cramér-Rao bound approach.\",\"authors\":\"Evan Scope Crafts, Mark A Anastasio, Umberto Villa\",\"doi\":\"10.1088/1361-6420/ad910a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative photoacoustic computed tomography (qPACT) is an emerging medical imaging modality that carries the promise of high-contrast, fine-resolution imaging of clinically relevant quantities like hemoglobin concentration and blood-oxygen saturation. However, qPACT image reconstruction is governed by a multiphysics, partial differential equation (PDE) based inverse problem that is highly non-linear and severely ill-posed. Compounding the difficulty of the problem is the lack of established design standards for qPACT imaging systems, as there is currently a proliferation of qPACT system designs for various applications and it is unknown which ones are optimal or how to best modify the systems under various design constraints. This work introduces a novel computational approach for the optimal experimental design of qPACT imaging systems based on the Bayesian Cramér-Rao bound (CRB). Our approach incorporates several techniques to address challenges associated with forming the bound in the infinite-dimensional function space setting of qPACT, including priors with trace-class covariance operators and the use of the variational adjoint method to compute derivatives of the log-likelihood function needed in the bound computation. The resulting Bayesian CRB based design metric is computationally efficient and independent of the choice of estimator used to solve the inverse problem. The efficacy of the bound in guiding experimental design was demonstrated in a numerical study of qPACT design schemes under a stylized two-dimensional imaging geometry. To the best of our knowledge, this is the first work to propose Bayesian CRB based design for systems governed by PDEs.</p>\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"40 12\",\"pages\":\"125012\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad910a\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad910a","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

定量光声计算机断层扫描(qPACT)是一种新兴的医学成像模式,有望对血红蛋白浓度和血氧饱和度等临床相关量进行高对比度、高分辨率成像。然而,qPACT 图像重建受制于一个多物理场、基于偏微分方程(PDE)的逆问题,该问题具有高度非线性和严重的不确定性。使问题更加困难的是,qPACT 成像系统缺乏既定的设计标准,因为目前针对各种应用的 qPACT 系统设计层出不穷,而哪些设计是最佳的,或者在各种设计约束条件下如何对系统进行最佳修改,都是未知数。这项工作介绍了一种基于贝叶斯克拉梅尔-拉奥约束(CRB)的 qPACT 成像系统优化实验设计的新型计算方法。我们的方法采用了多项技术,以应对在 qPACT 的无限维函数空间环境中形成约束所面临的挑战,包括使用迹类协方差算子的先验,以及使用变分邻接法计算约束计算中所需的对数似然函数的导数。由此产生的基于贝叶斯 CRB 的设计度量计算效率高,且与用于解决逆问题的估计器的选择无关。通过对二维成像几何形状下的 qPACT 设计方案进行数值研究,证明了该约束在指导实验设计方面的功效。据我们所知,这是第一项针对受 PDEs 控制的系统提出基于贝叶斯 CRB 的设计的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing quantitative photoacoustic imaging systems: the Bayesian Cramér-Rao bound approach.

Quantitative photoacoustic computed tomography (qPACT) is an emerging medical imaging modality that carries the promise of high-contrast, fine-resolution imaging of clinically relevant quantities like hemoglobin concentration and blood-oxygen saturation. However, qPACT image reconstruction is governed by a multiphysics, partial differential equation (PDE) based inverse problem that is highly non-linear and severely ill-posed. Compounding the difficulty of the problem is the lack of established design standards for qPACT imaging systems, as there is currently a proliferation of qPACT system designs for various applications and it is unknown which ones are optimal or how to best modify the systems under various design constraints. This work introduces a novel computational approach for the optimal experimental design of qPACT imaging systems based on the Bayesian Cramér-Rao bound (CRB). Our approach incorporates several techniques to address challenges associated with forming the bound in the infinite-dimensional function space setting of qPACT, including priors with trace-class covariance operators and the use of the variational adjoint method to compute derivatives of the log-likelihood function needed in the bound computation. The resulting Bayesian CRB based design metric is computationally efficient and independent of the choice of estimator used to solve the inverse problem. The efficacy of the bound in guiding experimental design was demonstrated in a numerical study of qPACT design schemes under a stylized two-dimensional imaging geometry. To the best of our knowledge, this is the first work to propose Bayesian CRB based design for systems governed by PDEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
期刊最新文献
Optimizing quantitative photoacoustic imaging systems: the Bayesian Cramér-Rao bound approach. A microlocal and visual comparison of 2D Kirchhoff migration formulas in seismic imaging * A bilevel optimization method for inverse mean-field games * Lipschitz stability of an inverse conductivity problem with two Cauchy data pairs Exact recovery of the support of piecewise constant images via total variation regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1