Guohao Zheng, Jingyuan Cao, Xiaonan H Wang, Wei He, Bin Wang
{"title":"肠道微生物组、慢性肾病和肌肉疏松症。","authors":"Guohao Zheng, Jingyuan Cao, Xiaonan H Wang, Wei He, Bin Wang","doi":"10.1186/s12964-024-01922-1","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcopenia is a prevalent condition in patients with chronic kidney disease (CKD), intricately linked to adverse prognoses, heightened cardiovascular risks, and increased mortality rates. Extensive studies have found a close and complex association between gut microbiota, kidney and muscle. On one front, patients with CKD manifest disturbances in gut microbiota and alterations in serum metabolites. These abnormal microbiota composition and metabolites in turn participate in the development of CKD. On another front, altered gut microbiota and its metabolites may lead to significant changes in metabolic homeostasis and inflammation, ultimately contributing to the onset of sarcopenia. The disturbance of gut microbial homeostasis, coupled with the accumulation of toxic metabolites, exerts deleterious effects on skeletal muscles in CKD patients with sarcopenia. This review meticulously describes the alterations observed in gut microbiota and its serum metabolites in CKD and sarcopenia patients, providing a comprehensive overview of pertinent studies. By delving into the intricate interplay of gut microbiota and serum metabolites in CKD-associated sarcopenia, we aim to unveil novel treatment strategies for ameliorating their symptoms and prognosis.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"558"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580515/pdf/","citationCount":"0","resultStr":"{\"title\":\"The gut microbiome, chronic kidney disease, and sarcopenia.\",\"authors\":\"Guohao Zheng, Jingyuan Cao, Xiaonan H Wang, Wei He, Bin Wang\",\"doi\":\"10.1186/s12964-024-01922-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sarcopenia is a prevalent condition in patients with chronic kidney disease (CKD), intricately linked to adverse prognoses, heightened cardiovascular risks, and increased mortality rates. Extensive studies have found a close and complex association between gut microbiota, kidney and muscle. On one front, patients with CKD manifest disturbances in gut microbiota and alterations in serum metabolites. These abnormal microbiota composition and metabolites in turn participate in the development of CKD. On another front, altered gut microbiota and its metabolites may lead to significant changes in metabolic homeostasis and inflammation, ultimately contributing to the onset of sarcopenia. The disturbance of gut microbial homeostasis, coupled with the accumulation of toxic metabolites, exerts deleterious effects on skeletal muscles in CKD patients with sarcopenia. This review meticulously describes the alterations observed in gut microbiota and its serum metabolites in CKD and sarcopenia patients, providing a comprehensive overview of pertinent studies. By delving into the intricate interplay of gut microbiota and serum metabolites in CKD-associated sarcopenia, we aim to unveil novel treatment strategies for ameliorating their symptoms and prognosis.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"558\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580515/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01922-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01922-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The gut microbiome, chronic kidney disease, and sarcopenia.
Sarcopenia is a prevalent condition in patients with chronic kidney disease (CKD), intricately linked to adverse prognoses, heightened cardiovascular risks, and increased mortality rates. Extensive studies have found a close and complex association between gut microbiota, kidney and muscle. On one front, patients with CKD manifest disturbances in gut microbiota and alterations in serum metabolites. These abnormal microbiota composition and metabolites in turn participate in the development of CKD. On another front, altered gut microbiota and its metabolites may lead to significant changes in metabolic homeostasis and inflammation, ultimately contributing to the onset of sarcopenia. The disturbance of gut microbial homeostasis, coupled with the accumulation of toxic metabolites, exerts deleterious effects on skeletal muscles in CKD patients with sarcopenia. This review meticulously describes the alterations observed in gut microbiota and its serum metabolites in CKD and sarcopenia patients, providing a comprehensive overview of pertinent studies. By delving into the intricate interplay of gut microbiota and serum metabolites in CKD-associated sarcopenia, we aim to unveil novel treatment strategies for ameliorating their symptoms and prognosis.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.