用化学沉淀和电化学方法处理含有 N,N-二甲基甲酰胺和高浓度氯盐的化妆品废水。

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Chemosphere Pub Date : 2024-11-01 DOI:10.1016/j.chemosphere.2024.143780
Zhi-Lun Wu, Yu-Jen Shih, Dong-Ming Chao
{"title":"用化学沉淀和电化学方法处理含有 N,N-二甲基甲酰胺和高浓度氯盐的化妆品废水。","authors":"Zhi-Lun Wu,&nbsp;Yu-Jen Shih,&nbsp;Dong-Ming Chao","doi":"10.1016/j.chemosphere.2024.143780","DOIUrl":null,"url":null,"abstract":"<div><div>High-strength wastewater containing elevated levels of chloride salt and N, N-dimethylformamide (DMF) solvent was collected from manufacturing of sunscreen cream (for UVA/UVB protection) at a cosmetic factory. In evaporation process, precipitates, formed due to the high chloride content (around 160 g/L), clog the pipeline, seriously reducing the treatment efficiency. This study aimed to develop a two-stage process integrating chemical precipitation and electrochemical oxidation to specifically remove the concentrated chloride salt and organic compounds (COD &gt;100 g/L). Chloride ions were initially recovered as insoluble Friedel's salt using calcium hydroxide (Ca(OH)<sub>2</sub>) and sodium aluminate (NaAlO<sub>2</sub>) as the precipitants. The [Cl]/[Ca]/[Al] ratio and solution pH were optimized to obtain a pure crystallized phase of Ca<sub>2</sub>AlCl(OH)<sub>6</sub>•2H<sub>2</sub>O. Afterwards, the organic compound were treated by a Fered-Fenton with the addition of H<sub>2</sub>O<sub>2</sub> and FeSO<sub>4</sub> to degrade the remaining COD. The cost and energy consumption of this integrated processes were evaluated, compared to the conventional evaporation method.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143780"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment of cosmetic wastewater containing N, N-dimethylformamide and high concentration of chloride salt by chemical precipitation and electrochemical method\",\"authors\":\"Zhi-Lun Wu,&nbsp;Yu-Jen Shih,&nbsp;Dong-Ming Chao\",\"doi\":\"10.1016/j.chemosphere.2024.143780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-strength wastewater containing elevated levels of chloride salt and N, N-dimethylformamide (DMF) solvent was collected from manufacturing of sunscreen cream (for UVA/UVB protection) at a cosmetic factory. In evaporation process, precipitates, formed due to the high chloride content (around 160 g/L), clog the pipeline, seriously reducing the treatment efficiency. This study aimed to develop a two-stage process integrating chemical precipitation and electrochemical oxidation to specifically remove the concentrated chloride salt and organic compounds (COD &gt;100 g/L). Chloride ions were initially recovered as insoluble Friedel's salt using calcium hydroxide (Ca(OH)<sub>2</sub>) and sodium aluminate (NaAlO<sub>2</sub>) as the precipitants. The [Cl]/[Ca]/[Al] ratio and solution pH were optimized to obtain a pure crystallized phase of Ca<sub>2</sub>AlCl(OH)<sub>6</sub>•2H<sub>2</sub>O. Afterwards, the organic compound were treated by a Fered-Fenton with the addition of H<sub>2</sub>O<sub>2</sub> and FeSO<sub>4</sub> to degrade the remaining COD. The cost and energy consumption of this integrated processes were evaluated, compared to the conventional evaporation method.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"368 \",\"pages\":\"Article 143780\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004565352402681X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004565352402681X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

一家化妆品工厂在生产防晒霜(用于 UVA/UVB 防护)时收集了高强度废水,其中含有大量氯盐和 N, N-二甲基甲酰胺 (DMF) 溶剂。在蒸发过程中,由于氯化物含量高(约 160 g L-1)而形成的沉淀物堵塞了管道,严重降低了处理效率。本研究旨在开发一种集化学沉淀和电化学氧化于一体的两阶段工艺,专门去除高浓度氯盐和有机化合物(COD > 100 g L-1)。以氢氧化钙 (Ca(OH)2) 和铝酸钠 (NaAlO2) 作为沉淀剂,氯离子最初以不溶性弗里德尔盐的形式被回收。通过优化[Cl]/[Ca]/[Al]比率和溶液 pH 值,获得了 Ca2AlCl(OH)6-2H2O 的纯结晶相。之后,有机化合物通过加入 H2O2 和 FeSO4 的铁-芬顿法进行处理,以降解剩余的 COD。与传统的蒸发法相比,对这种综合工艺的成本和能耗进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Treatment of cosmetic wastewater containing N, N-dimethylformamide and high concentration of chloride salt by chemical precipitation and electrochemical method
High-strength wastewater containing elevated levels of chloride salt and N, N-dimethylformamide (DMF) solvent was collected from manufacturing of sunscreen cream (for UVA/UVB protection) at a cosmetic factory. In evaporation process, precipitates, formed due to the high chloride content (around 160 g/L), clog the pipeline, seriously reducing the treatment efficiency. This study aimed to develop a two-stage process integrating chemical precipitation and electrochemical oxidation to specifically remove the concentrated chloride salt and organic compounds (COD >100 g/L). Chloride ions were initially recovered as insoluble Friedel's salt using calcium hydroxide (Ca(OH)2) and sodium aluminate (NaAlO2) as the precipitants. The [Cl]/[Ca]/[Al] ratio and solution pH were optimized to obtain a pure crystallized phase of Ca2AlCl(OH)6•2H2O. Afterwards, the organic compound were treated by a Fered-Fenton with the addition of H2O2 and FeSO4 to degrade the remaining COD. The cost and energy consumption of this integrated processes were evaluated, compared to the conventional evaporation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
期刊最新文献
Characterization of potentially toxic elements in leachates from active and closed landfills in Nigeria and their effects on groundwater systems using spatial, indexical, chemometric and health risk techniques Toxic effects of acute and chronic atorvastatin exposure on antioxidant systems, autophagy processes, energy metabolism and life history in Daphnia magna Molecular composition and formation mechanism of chlorinated organic compounds in biological waste leachate treated by electrochemical oxidation with a boron-doped diamond anode Antibiotics residues in inland and transitional sediments Exploring perfluoroalkyl substances contamination in human breast milk: First ghanaian study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1