加强蚜虫生物防治的生态强化需要切断嗜线虫

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-11-23 DOI:10.1007/s10340-024-01843-5
Sebastian Larsson Herrera, Zaid Badra, Mette Frimodt Hansen, Advaith Chakravarthy Shankarkumar, Isabella Kleman, Marco Tasin, Teun Dekker
{"title":"加强蚜虫生物防治的生态强化需要切断嗜线虫","authors":"Sebastian Larsson Herrera, Zaid Badra, Mette Frimodt Hansen, Advaith Chakravarthy Shankarkumar, Isabella Kleman, Marco Tasin, Teun Dekker","doi":"10.1007/s10340-024-01843-5","DOIUrl":null,"url":null,"abstract":"<p>With the rollback of insecticides, novel tools for pest control are urgently needed. Aphids are particularly a major concern with few sustainable control alternatives. Ecological intensification has been promoted as a way of “inviting\" back nature’s self-regulating abilities into agricultural production systems. Although such measures enhance the presence of natural enemies in agroecosystems, we demonstrate that in an ecologically intensified apple orchard, biocontrol of rosy apple aphid was minimal. We verified why the biodiverse settings did not result in enhanced ecosystem services, i.e., biological control of the rosy apple aphid. Close monitoring of food–web interactions in thousands of aphid colonies showed that tending ants dominated responses, while those of natural enemies were weak or absent. However, application of artificial aphid honeydew diverted ants from tending aphids and flipped the myrmecophily-dominated state into favoring numerical responses of a guild of natural enemies. Responses were swift and controlled both <i>Aphis pomi</i> and <i>Dysaphis plantaginea</i>, provided intervention was synced with aphid and predator phenology. Although myrmecophily in aphids is well-known on its own accord, it has been completely overlooked in ecological intensification. To unlock the aphid-biocontrol potential provided through ecological intensification, myrmecophily needs to be disrupted. Although particularly true for perennial systems, generally practices that reduce soil disturbance favor ants and may amplify aphid pests, thereby reducing biocontrol impacts in ecological intensification efforts. Harnessing ecosystem services requires careful analysis and good understanding of agroecosystem intricacies.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"35 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecological intensification for biocontrol of aphids requires severing myrmecophily\",\"authors\":\"Sebastian Larsson Herrera, Zaid Badra, Mette Frimodt Hansen, Advaith Chakravarthy Shankarkumar, Isabella Kleman, Marco Tasin, Teun Dekker\",\"doi\":\"10.1007/s10340-024-01843-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rollback of insecticides, novel tools for pest control are urgently needed. Aphids are particularly a major concern with few sustainable control alternatives. Ecological intensification has been promoted as a way of “inviting\\\" back nature’s self-regulating abilities into agricultural production systems. Although such measures enhance the presence of natural enemies in agroecosystems, we demonstrate that in an ecologically intensified apple orchard, biocontrol of rosy apple aphid was minimal. We verified why the biodiverse settings did not result in enhanced ecosystem services, i.e., biological control of the rosy apple aphid. Close monitoring of food–web interactions in thousands of aphid colonies showed that tending ants dominated responses, while those of natural enemies were weak or absent. However, application of artificial aphid honeydew diverted ants from tending aphids and flipped the myrmecophily-dominated state into favoring numerical responses of a guild of natural enemies. Responses were swift and controlled both <i>Aphis pomi</i> and <i>Dysaphis plantaginea</i>, provided intervention was synced with aphid and predator phenology. Although myrmecophily in aphids is well-known on its own accord, it has been completely overlooked in ecological intensification. To unlock the aphid-biocontrol potential provided through ecological intensification, myrmecophily needs to be disrupted. Although particularly true for perennial systems, generally practices that reduce soil disturbance favor ants and may amplify aphid pests, thereby reducing biocontrol impacts in ecological intensification efforts. Harnessing ecosystem services requires careful analysis and good understanding of agroecosystem intricacies.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01843-5\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01843-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着杀虫剂的减少,迫切需要新型害虫控制工具。蚜虫尤其令人担忧,而可持续的防治方法却很少。生态集约化被认为是将大自然的自我调节能力 "请 "回农业生产系统的一种方式。虽然这种措施能增加农业生态系统中天敌的存在,但我们证明,在生态强化的苹果园中,玫瑰苹果蚜的生物防治效果微乎其微。我们验证了为什么生物多样性环境没有增强生态系统服务,即对玫瑰苹蚜的生物防治。对数千个蚜虫群落中食物网相互作用的密切监测表明,驯化蚂蚁的反应占主导地位,而天敌的反应较弱或不存在。然而,施用人工蚜虫蜜露可以转移蚂蚁对蚜虫的照料,并将噬蚜蝇主导的状态转变为有利于天敌的数量反应。只要干预措施与蚜虫和捕食者的物候同步,就能迅速控制蚜虫和植蚜。虽然蚜虫嗜食蚜虫本身已广为人知,但在生态强化过程中却完全被忽视了。要想通过生态强化释放蚜虫生物控制潜力,就必须破坏嗜蚜性。虽然对多年生系统来说尤其如此,但一般来说,减少土壤扰动的做法有利于蚂蚁,可能会扩大蚜虫害,从而减少生态强化工作中生物控制的影响。利用生态系统服务需要仔细分析并充分了解农业生态系统的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ecological intensification for biocontrol of aphids requires severing myrmecophily

With the rollback of insecticides, novel tools for pest control are urgently needed. Aphids are particularly a major concern with few sustainable control alternatives. Ecological intensification has been promoted as a way of “inviting" back nature’s self-regulating abilities into agricultural production systems. Although such measures enhance the presence of natural enemies in agroecosystems, we demonstrate that in an ecologically intensified apple orchard, biocontrol of rosy apple aphid was minimal. We verified why the biodiverse settings did not result in enhanced ecosystem services, i.e., biological control of the rosy apple aphid. Close monitoring of food–web interactions in thousands of aphid colonies showed that tending ants dominated responses, while those of natural enemies were weak or absent. However, application of artificial aphid honeydew diverted ants from tending aphids and flipped the myrmecophily-dominated state into favoring numerical responses of a guild of natural enemies. Responses were swift and controlled both Aphis pomi and Dysaphis plantaginea, provided intervention was synced with aphid and predator phenology. Although myrmecophily in aphids is well-known on its own accord, it has been completely overlooked in ecological intensification. To unlock the aphid-biocontrol potential provided through ecological intensification, myrmecophily needs to be disrupted. Although particularly true for perennial systems, generally practices that reduce soil disturbance favor ants and may amplify aphid pests, thereby reducing biocontrol impacts in ecological intensification efforts. Harnessing ecosystem services requires careful analysis and good understanding of agroecosystem intricacies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Assessment of drive efficiency and resistance allele formation of a homing gene drive in the mosquito Aedes aegypti Exclusion of ants conditions the efficiency of an attract and reward strategy against Dysaphis plantaginea in apple orchards From a stored-product pest to a promising protein source: a U-turn of human perspective for the yellow mealworm Tenebrio molitor Biological control of pests of stored cereals with the predatory mites Blattisocius tarsalis and Cheyletus malaccensis Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1