通过强烈的斥力相互作用实现基于非晶聚合物的高效超长磷光效应

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-22 DOI:10.1002/adfm.202413878
Shuanma Yan, Yiyan Guan, Xiang Zhou, Chenglin Mei, Huiling Mao, Huili Ma, Zhongfu An, Huifang Shi, Wei Huang
{"title":"通过强烈的斥力相互作用实现基于非晶聚合物的高效超长磷光效应","authors":"Shuanma Yan, Yiyan Guan, Xiang Zhou, Chenglin Mei, Huiling Mao, Huili Ma, Zhongfu An, Huifang Shi, Wei Huang","doi":"10.1002/adfm.202413878","DOIUrl":null,"url":null,"abstract":"Amorphous polymer-based materials combining high optical transparency, mechanical flexibility, and the potential for low-cost scalability and processing, are attractive in the vibrant field of ultralong organic phosphorescence (UOP). However, developing amorphous polymer-based UOP materials with high quantum efficiency (Ф<sub>P</sub>) remains a formidable challenge because the inherently loose polymer networks lead to the violent non-radiative transition and quenching processes of triplet excitons. Herein, a series of amorphous polymer-based UOP materials are fabricated by doping organic phosphors (SA, DA, and TA) composed of triphenylamine units modified with different numbers of carboxyl groups into polyvinyl alcohol (PVA) matrix. These experimental and computational results indicate that the resulting polymer films (SA/PVA, DA/PVA, and TA/PVA) exhibit the gradually enhanced UOP, which is attributed to the increased intermolecular hydrogen-bonded interactions, enabling incremental repulsive interactions between the isolated chromophores and PVA matrix, resulting in the reduced dissipation of triplet excitons through a non-radiative transition. Remarkably, TA/PVA has an optimal Ф<sub>P</sub> of up to 77.5%, which is a record Ф<sub>P</sub> among the reported heavy-atom-free amorphous polymer-based UOP materials. Given the bright afterglow emission and solution-processable properties, the promise of transparent, flexible, and large-area paints for display and illumination are demonstrated. This study will provide a design strategy to enhance the quantum efficiency of amorphous phosphorescent materials, showing great promise in flexible electronics.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"71 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Efficient Amorphous Polymer-Based Ultralong Phosphorescence Enabled by Intense Repulsive Interactions\",\"authors\":\"Shuanma Yan, Yiyan Guan, Xiang Zhou, Chenglin Mei, Huiling Mao, Huili Ma, Zhongfu An, Huifang Shi, Wei Huang\",\"doi\":\"10.1002/adfm.202413878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amorphous polymer-based materials combining high optical transparency, mechanical flexibility, and the potential for low-cost scalability and processing, are attractive in the vibrant field of ultralong organic phosphorescence (UOP). However, developing amorphous polymer-based UOP materials with high quantum efficiency (Ф<sub>P</sub>) remains a formidable challenge because the inherently loose polymer networks lead to the violent non-radiative transition and quenching processes of triplet excitons. Herein, a series of amorphous polymer-based UOP materials are fabricated by doping organic phosphors (SA, DA, and TA) composed of triphenylamine units modified with different numbers of carboxyl groups into polyvinyl alcohol (PVA) matrix. These experimental and computational results indicate that the resulting polymer films (SA/PVA, DA/PVA, and TA/PVA) exhibit the gradually enhanced UOP, which is attributed to the increased intermolecular hydrogen-bonded interactions, enabling incremental repulsive interactions between the isolated chromophores and PVA matrix, resulting in the reduced dissipation of triplet excitons through a non-radiative transition. Remarkably, TA/PVA has an optimal Ф<sub>P</sub> of up to 77.5%, which is a record Ф<sub>P</sub> among the reported heavy-atom-free amorphous polymer-based UOP materials. Given the bright afterglow emission and solution-processable properties, the promise of transparent, flexible, and large-area paints for display and illumination are demonstrated. This study will provide a design strategy to enhance the quantum efficiency of amorphous phosphorescent materials, showing great promise in flexible electronics.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202413878\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202413878","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非晶聚合物基材料兼具高光学透明度、机械灵活性以及低成本可扩展性和加工潜力,在生机勃勃的超长有机磷光(UOP)领域极具吸引力。然而,开发具有高量子效率(ФP)的非晶聚合物基 UOP 材料仍然是一项艰巨的挑战,因为固有的松散聚合物网络会导致三重激子发生剧烈的非辐射转变和淬灭过程。本文通过在聚乙烯醇(PVA)基质中掺入由不同数量羧基修饰的三苯胺单元组成的有机荧光粉(SA、DA 和 TA),制备了一系列基于非晶聚合物的 UOP 材料。这些实验和计算结果表明,由此产生的聚合物薄膜(SA/PVA、DA/PVA 和 TA/PVA)显示出逐渐增强的 UOP,这归因于分子间氢键相互作用的增加,使孤立的发色团与 PVA 基体之间的排斥作用递增,从而通过非辐射转变减少了三重激子的耗散。值得注意的是,TA/PVA 的最佳 ФP 值高达 77.5%,在已报道的无重原子无定形聚合物基 UOP 材料中创下了 ФP 值的最高纪录。鉴于其明亮的余辉发射和溶液可加工特性,该材料有望成为透明、柔性和大面积的显示和照明涂料。这项研究将为提高非晶磷光材料的量子效率提供一种设计策略,从而为柔性电子产品带来巨大前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly Efficient Amorphous Polymer-Based Ultralong Phosphorescence Enabled by Intense Repulsive Interactions
Amorphous polymer-based materials combining high optical transparency, mechanical flexibility, and the potential for low-cost scalability and processing, are attractive in the vibrant field of ultralong organic phosphorescence (UOP). However, developing amorphous polymer-based UOP materials with high quantum efficiency (ФP) remains a formidable challenge because the inherently loose polymer networks lead to the violent non-radiative transition and quenching processes of triplet excitons. Herein, a series of amorphous polymer-based UOP materials are fabricated by doping organic phosphors (SA, DA, and TA) composed of triphenylamine units modified with different numbers of carboxyl groups into polyvinyl alcohol (PVA) matrix. These experimental and computational results indicate that the resulting polymer films (SA/PVA, DA/PVA, and TA/PVA) exhibit the gradually enhanced UOP, which is attributed to the increased intermolecular hydrogen-bonded interactions, enabling incremental repulsive interactions between the isolated chromophores and PVA matrix, resulting in the reduced dissipation of triplet excitons through a non-radiative transition. Remarkably, TA/PVA has an optimal ФP of up to 77.5%, which is a record ФP among the reported heavy-atom-free amorphous polymer-based UOP materials. Given the bright afterglow emission and solution-processable properties, the promise of transparent, flexible, and large-area paints for display and illumination are demonstrated. This study will provide a design strategy to enhance the quantum efficiency of amorphous phosphorescent materials, showing great promise in flexible electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Triboelectric Pulse Promotes Self-Cleaning, Catalysis of Nano-Confined Domain Lamellar Membranes for Effective Water Decontamination A Proton Selective Carbon Nitride Layer for High Durability Fuel Cells Deuteration-Induced Superior Properties in Polymer/Soluble Acene Blends: A Comprehensive Study The Evolution of Underwater Microelectronic Encapsulation: An Universal Marine Wearable Hydrogel Triple-Functional Amorphous In2O3 Anode Protection Layer Design for High-Performance Aqueous Zinc Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1