用于研究多尺度极光事件之间相关性的弱监督涡旋探测

Qian Wang;Jinming Shi;Jiachen Liu;Jiulun Fan
{"title":"用于研究多尺度极光事件之间相关性的弱监督涡旋探测","authors":"Qian Wang;Jinming Shi;Jiachen Liu;Jiulun Fan","doi":"10.1109/LGRS.2024.3494815","DOIUrl":null,"url":null,"abstract":"Aurora is the most visible manifestation of the sun’s effect on Earth. The ground-based all-sky imager (ASI) can observe a wealth of multiscale morphological features. Auroral image classification is an important tool for studying magnetospheric regimes and dynamic activities of aurora. Previous studies of automated auroral image classification focused more on auroral large-scale features across the entire image, ignoring small-scale auroral structures. In this letter, we introduce an object detection approach to investigate the small-scale features of auroral morphology. Since the small-scale auroral structures are nonrigid, morphologically diverse, and undefined boundaries, pixel-level labeling is labor-intensive and error-prone for human experts. Therefore, a weakly supervised object detection method for auroral vortexes is proposed in the absence of pixel-level annotations. We first perform global semantic identification and coarse localization using image-level labels as supervision. Considering the motion properties of vortexes, the global and local semantic information in a spatiotemporal volume is leveraged as semantic and location continuity constraints to generate high-confidence pseudo-labels. The experiments demonstrate that the proposed method can identify the vortexes more accurately. The method can retrieve small-scale auroral events in the aurora image dataset, allowing the study of the correlation of multiscale auroral events to be carried out.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly Supervised Vortex Detection for Studying Correlation Between Multiscale Auroral Events\",\"authors\":\"Qian Wang;Jinming Shi;Jiachen Liu;Jiulun Fan\",\"doi\":\"10.1109/LGRS.2024.3494815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aurora is the most visible manifestation of the sun’s effect on Earth. The ground-based all-sky imager (ASI) can observe a wealth of multiscale morphological features. Auroral image classification is an important tool for studying magnetospheric regimes and dynamic activities of aurora. Previous studies of automated auroral image classification focused more on auroral large-scale features across the entire image, ignoring small-scale auroral structures. In this letter, we introduce an object detection approach to investigate the small-scale features of auroral morphology. Since the small-scale auroral structures are nonrigid, morphologically diverse, and undefined boundaries, pixel-level labeling is labor-intensive and error-prone for human experts. Therefore, a weakly supervised object detection method for auroral vortexes is proposed in the absence of pixel-level annotations. We first perform global semantic identification and coarse localization using image-level labels as supervision. Considering the motion properties of vortexes, the global and local semantic information in a spatiotemporal volume is leveraged as semantic and location continuity constraints to generate high-confidence pseudo-labels. The experiments demonstrate that the proposed method can identify the vortexes more accurately. The method can retrieve small-scale auroral events in the aurora image dataset, allowing the study of the correlation of multiscale auroral events to be carried out.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750043/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750043/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极光是太阳对地球影响的最明显表现。地基全天空成像仪(ASI)可以观测到丰富的多尺度形态特征。极光图像分类是研究磁层制度和极光动态活动的重要工具。以往的极光图像自动分类研究更侧重于整个图像的极光大尺度特征,而忽略了极光的小尺度结构。在这封信中,我们介绍了一种物体检测方法来研究极光形态的小尺度特征。由于小尺度极光结构是非刚性的、形态多样且边界不确定,因此对人类专家来说,像素级标注既费力又容易出错。因此,在没有像素级标注的情况下,我们提出了一种针对极光涡旋的弱监督对象检测方法。我们首先使用图像级标签作为监督,进行全局语义识别和粗略定位。考虑到涡旋的运动特性,利用时空卷中的全局和局部语义信息作为语义和位置连续性约束,生成高置信度的伪标签。实验证明,所提出的方法能更准确地识别涡旋。该方法可以检索极光图像数据集中的小尺度极光事件,从而对多尺度极光事件的相关性进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weakly Supervised Vortex Detection for Studying Correlation Between Multiscale Auroral Events
Aurora is the most visible manifestation of the sun’s effect on Earth. The ground-based all-sky imager (ASI) can observe a wealth of multiscale morphological features. Auroral image classification is an important tool for studying magnetospheric regimes and dynamic activities of aurora. Previous studies of automated auroral image classification focused more on auroral large-scale features across the entire image, ignoring small-scale auroral structures. In this letter, we introduce an object detection approach to investigate the small-scale features of auroral morphology. Since the small-scale auroral structures are nonrigid, morphologically diverse, and undefined boundaries, pixel-level labeling is labor-intensive and error-prone for human experts. Therefore, a weakly supervised object detection method for auroral vortexes is proposed in the absence of pixel-level annotations. We first perform global semantic identification and coarse localization using image-level labels as supervision. Considering the motion properties of vortexes, the global and local semantic information in a spatiotemporal volume is leveraged as semantic and location continuity constraints to generate high-confidence pseudo-labels. The experiments demonstrate that the proposed method can identify the vortexes more accurately. The method can retrieve small-scale auroral events in the aurora image dataset, allowing the study of the correlation of multiscale auroral events to be carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deeper and Broader Multimodal Fusion: Cascaded Forest-of-Experts for Land Cover Classification Impact of Targeted Sounding Observations From FY-4B GIIRS on Two Super Typhoon Forecasts in 2024 Structural Representation-Guided GAN for Remote Sensing Image Cloud Removal Multispectral Airborne LiDAR Point Cloud Classification With Maximum Entropy Hierarchical Pooling A Satellite Selection Algorithm for GNSS-R InSAR Elevation Deformation Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1