利用亲和超滤结合超高效液相色谱-质谱法筛选和表征黄皮树果实中潜在的乙酰胆碱酯酶抑制剂

IF 3.5 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Food Biochemistry Pub Date : 2024-11-21 DOI:10.1155/jfbc/6643716
Yangzom Dawa, Juan Chen
{"title":"利用亲和超滤结合超高效液相色谱-质谱法筛选和表征黄皮树果实中潜在的乙酰胆碱酯酶抑制剂","authors":"Yangzom Dawa,&nbsp;Juan Chen","doi":"10.1155/jfbc/6643716","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this study, targeting acetylcholinesterase (AChE) related to Alzheimer’s disease, a screening method, affinity ultrafiltration combined with ultra-high-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry (AUF–UHPLC–Q-TOF MS) was developed for the discovery and identification of AChE inhibitors from <i>Phyllanthus emblica</i> L. fruits, a medicinal and food homologous plant. The 30% ethanol extract of <i>P</i>. <i>emblica</i> fruit was incubated with AChE allowing active components to form complexes with AChE. Subsequently, the complexes were separated from the incubation and dissociated to release active components, followed by UHPLC–Q-TOF MS analysis. Ultimately, a total of 18 compounds bound to AChE were screened out and identified. Among them, elaeocarpusin, putranjivain A, and chebulagic acid were confirmed to possess the highest affinity to AChE by molecular docking. Subsequently, the AChE inhibitory activity of commercially available chebulagic acid and corilagin was verified in vitro. Ultimately, cellular assays demonstrated that both chebulagic acid and corilagin enhanced cell viability in a concentration-dependent manner when compared to a model of AD cells induced by A<i>β</i><sub>25–35</sub>. Moreover, it was noted that chebulagic acid exhibited superior protective effects relative to corilagin against A<i>β</i><sub>25–35</sub>-induced injury in PC12 cells. These findings indicate that the developed methodology is not only straightforward and rapid but also reliable, offering significant insights for the screening of active compounds from complex medicinal and food homologous plants.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfbc/6643716","citationCount":"0","resultStr":"{\"title\":\"Screening and Characterization of Potential Acetylcholinesterase Inhibitors From Phyllanthus emblica L. Fruits Using Affinity Ultrafiltration Combined With Ultra-High-Performance Liquid Chromatography–Mass Spectrometry\",\"authors\":\"Yangzom Dawa,&nbsp;Juan Chen\",\"doi\":\"10.1155/jfbc/6643716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this study, targeting acetylcholinesterase (AChE) related to Alzheimer’s disease, a screening method, affinity ultrafiltration combined with ultra-high-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry (AUF–UHPLC–Q-TOF MS) was developed for the discovery and identification of AChE inhibitors from <i>Phyllanthus emblica</i> L. fruits, a medicinal and food homologous plant. The 30% ethanol extract of <i>P</i>. <i>emblica</i> fruit was incubated with AChE allowing active components to form complexes with AChE. Subsequently, the complexes were separated from the incubation and dissociated to release active components, followed by UHPLC–Q-TOF MS analysis. Ultimately, a total of 18 compounds bound to AChE were screened out and identified. Among them, elaeocarpusin, putranjivain A, and chebulagic acid were confirmed to possess the highest affinity to AChE by molecular docking. Subsequently, the AChE inhibitory activity of commercially available chebulagic acid and corilagin was verified in vitro. Ultimately, cellular assays demonstrated that both chebulagic acid and corilagin enhanced cell viability in a concentration-dependent manner when compared to a model of AD cells induced by A<i>β</i><sub>25–35</sub>. Moreover, it was noted that chebulagic acid exhibited superior protective effects relative to corilagin against A<i>β</i><sub>25–35</sub>-induced injury in PC12 cells. These findings indicate that the developed methodology is not only straightforward and rapid but also reliable, offering significant insights for the screening of active compounds from complex medicinal and food homologous plants.</p>\\n </div>\",\"PeriodicalId\":15802,\"journal\":{\"name\":\"Journal of Food Biochemistry\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfbc/6643716\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/jfbc/6643716\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/jfbc/6643716","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究针对与阿尔茨海默病有关的乙酰胆碱酯酶(AChE),开发了一种亲和超滤结合超高效液相色谱-四极杆-飞行时间质谱(AUF-UHPLC-Q-TOF MS)的筛选方法,用于发现和鉴定药食同源植物白皮松果实中的 AChE 抑制剂。将 30% 的白皮松果实乙醇提取物与 AChE 培养,使活性成分与 AChE 形成复合物。随后,将复合物从培养液中分离出来并解离以释放活性成分,然后进行超高效液相色谱-质谱质谱分析。最终,共筛选并鉴定出 18 种与 AChE 结合的化合物。其中,通过分子对接,确认依来苏木素、putranjivain A 和诃子酸与 AChE 的亲和力最高。随后,在体外验证了市售诃子酸和柯里拉京的 AChE 抑制活性。最终,细胞试验表明,与 Aβ25-35 诱导的 AD 细胞模型相比,诃子酸和柯里拉京都能以浓度依赖性的方式提高细胞活力。此外,在 PC12 细胞中,诃子酸对 Aβ25-35 诱导的损伤的保护作用优于柯里拉京。这些发现表明,所开发的方法不仅简单、快速,而且可靠,为从复杂的药食同源植物中筛选活性化合物提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Screening and Characterization of Potential Acetylcholinesterase Inhibitors From Phyllanthus emblica L. Fruits Using Affinity Ultrafiltration Combined With Ultra-High-Performance Liquid Chromatography–Mass Spectrometry

In this study, targeting acetylcholinesterase (AChE) related to Alzheimer’s disease, a screening method, affinity ultrafiltration combined with ultra-high-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry (AUF–UHPLC–Q-TOF MS) was developed for the discovery and identification of AChE inhibitors from Phyllanthus emblica L. fruits, a medicinal and food homologous plant. The 30% ethanol extract of P. emblica fruit was incubated with AChE allowing active components to form complexes with AChE. Subsequently, the complexes were separated from the incubation and dissociated to release active components, followed by UHPLC–Q-TOF MS analysis. Ultimately, a total of 18 compounds bound to AChE were screened out and identified. Among them, elaeocarpusin, putranjivain A, and chebulagic acid were confirmed to possess the highest affinity to AChE by molecular docking. Subsequently, the AChE inhibitory activity of commercially available chebulagic acid and corilagin was verified in vitro. Ultimately, cellular assays demonstrated that both chebulagic acid and corilagin enhanced cell viability in a concentration-dependent manner when compared to a model of AD cells induced by Aβ25–35. Moreover, it was noted that chebulagic acid exhibited superior protective effects relative to corilagin against Aβ25–35-induced injury in PC12 cells. These findings indicate that the developed methodology is not only straightforward and rapid but also reliable, offering significant insights for the screening of active compounds from complex medicinal and food homologous plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Biochemistry
Journal of Food Biochemistry 生物-生化与分子生物学
CiteScore
7.80
自引率
5.00%
发文量
488
审稿时长
3.6 months
期刊介绍: The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet. Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes: -Biochemistry of postharvest/postmortem and processing problems -Enzyme chemistry and technology -Membrane biology and chemistry -Cell biology -Biophysics -Genetic expression -Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following: -Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease -The mechanism of the ripening process in fruit -The biogenesis of flavor precursors in meat -How biochemical changes in farm-raised fish are affecting processing and edible quality
期刊最新文献
γ-Glutamylcysteine Inhibits VSMC-Derived Foam Cell Formation via Upregulating Thioredoxin-1 Expression Pharmacological Appraisal of Aqueous Ethanolic Extract of Cuminum cyminum (Cumin Seeds) in Obesity and Endocrinopathies Associated With Polycystic Ovarian Syndrome in Animal Models Flavonoids Isolated From Delphinium semibarbatum Flowering Aerial Parts With Their Antibacterial, Antibiofilm, and Antiswarming Activity Against Proteus mirabilis and Staphylococcus aureus Herbacetin Attenuates Oxidative Stress via Activating Nrf2/HO-1 Signaling Pathway in RAW 264.7 Cells and Caenorhabditis elegans Anti-Inflammatory and Bacteriostatic Effects of Hydrogen-Rich Water on Rats With Periodontitis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1