{"title":"利用基于 GPU 的通用框架加速多任务进化优化","authors":"Zhitong Ma;Jinghui Zhong;Wei-Li Liu;Jun Zhang","doi":"10.1109/TETCI.2024.3381512","DOIUrl":null,"url":null,"abstract":"Evolutionary multitasking(EMT), which conducts evolutionary research on multiple tasks simultaneously, is an emerging research topic in the computation intelligence community. It aims to enhance the convergence characteristics by simultaneously conducting evolutionary research on multiple tasks, thereby facilitating knowledge transfer among tasks and achieving exceptional performance in solution quality. However, most of the existing EMT algorithms still suffer from the high computational burden especially when the number of tasks is large. To address this issue, this paper proposes a GPU-based multitasking evolutionary framework, which is able to handle thousands of tasks that arrive asynchronous in a short time. Besides, a concurrent multi-island mechanism is proposed to enable the parallel EMT algorithm to efficiently solve high-dimensional problems. Experimental results on eight problems with differing characteristics have demonstrated that the proposed framework is effective in solving high-dimensional problems and can significantly reduce the search time.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 6","pages":"3995-4010"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Evolutionary Multitasking Optimization With a Generalized GPU-Based Framework\",\"authors\":\"Zhitong Ma;Jinghui Zhong;Wei-Li Liu;Jun Zhang\",\"doi\":\"10.1109/TETCI.2024.3381512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary multitasking(EMT), which conducts evolutionary research on multiple tasks simultaneously, is an emerging research topic in the computation intelligence community. It aims to enhance the convergence characteristics by simultaneously conducting evolutionary research on multiple tasks, thereby facilitating knowledge transfer among tasks and achieving exceptional performance in solution quality. However, most of the existing EMT algorithms still suffer from the high computational burden especially when the number of tasks is large. To address this issue, this paper proposes a GPU-based multitasking evolutionary framework, which is able to handle thousands of tasks that arrive asynchronous in a short time. Besides, a concurrent multi-island mechanism is proposed to enable the parallel EMT algorithm to efficiently solve high-dimensional problems. Experimental results on eight problems with differing characteristics have demonstrated that the proposed framework is effective in solving high-dimensional problems and can significantly reduce the search time.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 6\",\"pages\":\"3995-4010\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10498066/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10498066/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Accelerating Evolutionary Multitasking Optimization With a Generalized GPU-Based Framework
Evolutionary multitasking(EMT), which conducts evolutionary research on multiple tasks simultaneously, is an emerging research topic in the computation intelligence community. It aims to enhance the convergence characteristics by simultaneously conducting evolutionary research on multiple tasks, thereby facilitating knowledge transfer among tasks and achieving exceptional performance in solution quality. However, most of the existing EMT algorithms still suffer from the high computational burden especially when the number of tasks is large. To address this issue, this paper proposes a GPU-based multitasking evolutionary framework, which is able to handle thousands of tasks that arrive asynchronous in a short time. Besides, a concurrent multi-island mechanism is proposed to enable the parallel EMT algorithm to efficiently solve high-dimensional problems. Experimental results on eight problems with differing characteristics have demonstrated that the proposed framework is effective in solving high-dimensional problems and can significantly reduce the search time.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.