具有自适应参数的固定时间稳健 ZNN 模型,用于解决机械手的冗余问题

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Emerging Topics in Computational Intelligence Pub Date : 2024-04-01 DOI:10.1109/TETCI.2024.3377672
Mengrui Cao;Lin Xiao;Qiuyue Zuo;Ping Tan;Yongjun He;Xieping Gao
{"title":"具有自适应参数的固定时间稳健 ZNN 模型,用于解决机械手的冗余问题","authors":"Mengrui Cao;Lin Xiao;Qiuyue Zuo;Ping Tan;Yongjun He;Xieping Gao","doi":"10.1109/TETCI.2024.3377672","DOIUrl":null,"url":null,"abstract":"Due to the excellent time-varying problem-solving capability of zeroing neural network (ZNN), many redundancy resolution schemes based on ZNN have been proposed for robots. The work proposes a fixed-time robust ZNN (FTRZNN) model with adaptive parameters to effectively address redundancy resolution problems of robots in the presence of noises. Differing from existing ZNN models, the FTRZNN possesses a fixed-time activation function and two adaptive parameters, which greatly improve its performance on convergence speed and robustness. The establishment of the FTRZNN for handling redundancy resolution problems consists of two steps: 1) converting the target practical problem into nonlinear equations firstly; and 2) deriving an FTRZNN for solving the equations. For providing a convincible evidence of the significant advantages of the FTRZNN over existing ZNN models, theoretical analysis in convergence and robustness of the FTRZNN is given, and the performance of the FTRZNN model is compared with existing ZNN models when performing path tracking tasks using a 6R manipulator under different noise disturbances. Finally, the FTRZNN model is employed to control two robot manipulators (UR5 and Jaco) to track desired paths under noise interference, which is simulated on a robotic simulation platform (i.e.,CoppeliaSim). Simulation results indicate the effectiveness and potential practical value of the FTRZNN model.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 6","pages":"3886-3898"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fixed-Time Robust ZNN Model With Adaptive Parameters for Redundancy Resolution of Manipulators\",\"authors\":\"Mengrui Cao;Lin Xiao;Qiuyue Zuo;Ping Tan;Yongjun He;Xieping Gao\",\"doi\":\"10.1109/TETCI.2024.3377672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the excellent time-varying problem-solving capability of zeroing neural network (ZNN), many redundancy resolution schemes based on ZNN have been proposed for robots. The work proposes a fixed-time robust ZNN (FTRZNN) model with adaptive parameters to effectively address redundancy resolution problems of robots in the presence of noises. Differing from existing ZNN models, the FTRZNN possesses a fixed-time activation function and two adaptive parameters, which greatly improve its performance on convergence speed and robustness. The establishment of the FTRZNN for handling redundancy resolution problems consists of two steps: 1) converting the target practical problem into nonlinear equations firstly; and 2) deriving an FTRZNN for solving the equations. For providing a convincible evidence of the significant advantages of the FTRZNN over existing ZNN models, theoretical analysis in convergence and robustness of the FTRZNN is given, and the performance of the FTRZNN model is compared with existing ZNN models when performing path tracking tasks using a 6R manipulator under different noise disturbances. Finally, the FTRZNN model is employed to control two robot manipulators (UR5 and Jaco) to track desired paths under noise interference, which is simulated on a robotic simulation platform (i.e.,CoppeliaSim). Simulation results indicate the effectiveness and potential practical value of the FTRZNN model.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 6\",\"pages\":\"3886-3898\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10486974/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10486974/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于归零神经网络(ZNN)具有出色的时变问题解决能力,许多基于 ZNN 的机器人冗余解析方案被提出。本研究提出了一种具有自适应参数的固定时间鲁棒 ZNN(FTRZNN)模型,以有效解决机器人在噪声存在时的冗余解决难题。与现有的 ZNN 模型不同,FTRZNN 具有一个固定时间激活函数和两个自适应参数,这大大提高了其收敛速度和鲁棒性。建立 FTRZNN 来处理冗余解析问题包括两个步骤:1) 首先将目标实际问题转换为非线性方程;2) 推导出用于求解方程的 FTRZNN。为了有力证明 FTRZNN 相对于现有 ZNN 模型的显著优势,本文对 FTRZNN 的收敛性和鲁棒性进行了理论分析,并比较了 FTRZNN 模型与现有 ZNN 模型在不同噪声干扰下使用 6R 机械手执行路径跟踪任务时的性能。最后,利用 FTRZNN 模型控制两个机器人机械手(UR5 和 Jaco)在噪声干扰下跟踪所需路径,并在机器人仿真平台(即 CoppeliaSim)上进行了仿真。仿真结果表明了 FTRZNN 模型的有效性和潜在实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fixed-Time Robust ZNN Model With Adaptive Parameters for Redundancy Resolution of Manipulators
Due to the excellent time-varying problem-solving capability of zeroing neural network (ZNN), many redundancy resolution schemes based on ZNN have been proposed for robots. The work proposes a fixed-time robust ZNN (FTRZNN) model with adaptive parameters to effectively address redundancy resolution problems of robots in the presence of noises. Differing from existing ZNN models, the FTRZNN possesses a fixed-time activation function and two adaptive parameters, which greatly improve its performance on convergence speed and robustness. The establishment of the FTRZNN for handling redundancy resolution problems consists of two steps: 1) converting the target practical problem into nonlinear equations firstly; and 2) deriving an FTRZNN for solving the equations. For providing a convincible evidence of the significant advantages of the FTRZNN over existing ZNN models, theoretical analysis in convergence and robustness of the FTRZNN is given, and the performance of the FTRZNN model is compared with existing ZNN models when performing path tracking tasks using a 6R manipulator under different noise disturbances. Finally, the FTRZNN model is employed to control two robot manipulators (UR5 and Jaco) to track desired paths under noise interference, which is simulated on a robotic simulation platform (i.e.,CoppeliaSim). Simulation results indicate the effectiveness and potential practical value of the FTRZNN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
期刊最新文献
Table of Contents IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors IEEE Computational Intelligence Society Information Decentralized Triggering and Event-Based Integral Reinforcement Learning for Multiplayer Differential Game Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1