Yubo Zhao;Jiaqi Wu;Wei Chen;Zehua Wang;Zijian Tian;Fei Richard Yu;Victor C. M. Leung
{"title":"用于低照度环境下电力线检测的小物体实时检测方法","authors":"Yubo Zhao;Jiaqi Wu;Wei Chen;Zehua Wang;Zijian Tian;Fei Richard Yu;Victor C. M. Leung","doi":"10.1109/TETCI.2024.3378651","DOIUrl":null,"url":null,"abstract":"Power inspection in low-illuminance environments is of great significance for ensuring the all-weather stable operation of the power system. However, low visibility at night seriously interferes with the detection performance of small-sized power devices. In response to the issue, we propose a small object real-time detection method for power line inspection in low-illuminance environments. We design an adaptive transformer-ISP (ATISP) module, in which the optimal parameter regression module generates hyperparameters by sensing input image features to guide the image signal processors (ISPs) to perform image enhancement. With the advantage of ISPs, the ATISP has the advantages of fast inference speed and less training cost. Furthermore, the optimal parameter regression module extracts local features and long-distance dependencies through CNN and Transformer to be able to more fully perceive the input image, so that the generated hyperparameters better enhance image defects. In addition, we use lightweight neural network MobileNetv3 to improve YOLOv7, so that the algorithm maintains excellent small object detection performance while significantly increasing the detection speed. Moreover, the integrated model optimisation uses only the object detection loss functions, which allows ATISP to perform image enhancement just according to the object detection needs, improving small object detection effect and shortening the inference time of ATISP. In extensive experiments, compared with 9 state-of-the-art object detection algorithms, our algorithm has the best small-scale insulator faults detection precision (mAP:75.38\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n) in our DIFE, best small object detection precision (mAP:56.31\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n) in public dataset Exdark, and faster detection speed (FPS:98.81 and 97.53), which prove our method can achieve fast and accurate low-illuminance insulators detection.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 6","pages":"3936-3950"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Small Object Real-Time Detection Method for Power Line Inspection in Low-Illuminance Environments\",\"authors\":\"Yubo Zhao;Jiaqi Wu;Wei Chen;Zehua Wang;Zijian Tian;Fei Richard Yu;Victor C. M. Leung\",\"doi\":\"10.1109/TETCI.2024.3378651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power inspection in low-illuminance environments is of great significance for ensuring the all-weather stable operation of the power system. However, low visibility at night seriously interferes with the detection performance of small-sized power devices. In response to the issue, we propose a small object real-time detection method for power line inspection in low-illuminance environments. We design an adaptive transformer-ISP (ATISP) module, in which the optimal parameter regression module generates hyperparameters by sensing input image features to guide the image signal processors (ISPs) to perform image enhancement. With the advantage of ISPs, the ATISP has the advantages of fast inference speed and less training cost. Furthermore, the optimal parameter regression module extracts local features and long-distance dependencies through CNN and Transformer to be able to more fully perceive the input image, so that the generated hyperparameters better enhance image defects. In addition, we use lightweight neural network MobileNetv3 to improve YOLOv7, so that the algorithm maintains excellent small object detection performance while significantly increasing the detection speed. Moreover, the integrated model optimisation uses only the object detection loss functions, which allows ATISP to perform image enhancement just according to the object detection needs, improving small object detection effect and shortening the inference time of ATISP. In extensive experiments, compared with 9 state-of-the-art object detection algorithms, our algorithm has the best small-scale insulator faults detection precision (mAP:75.38\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n) in our DIFE, best small object detection precision (mAP:56.31\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n) in public dataset Exdark, and faster detection speed (FPS:98.81 and 97.53), which prove our method can achieve fast and accurate low-illuminance insulators detection.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 6\",\"pages\":\"3936-3950\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10487990/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10487990/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Small Object Real-Time Detection Method for Power Line Inspection in Low-Illuminance Environments
Power inspection in low-illuminance environments is of great significance for ensuring the all-weather stable operation of the power system. However, low visibility at night seriously interferes with the detection performance of small-sized power devices. In response to the issue, we propose a small object real-time detection method for power line inspection in low-illuminance environments. We design an adaptive transformer-ISP (ATISP) module, in which the optimal parameter regression module generates hyperparameters by sensing input image features to guide the image signal processors (ISPs) to perform image enhancement. With the advantage of ISPs, the ATISP has the advantages of fast inference speed and less training cost. Furthermore, the optimal parameter regression module extracts local features and long-distance dependencies through CNN and Transformer to be able to more fully perceive the input image, so that the generated hyperparameters better enhance image defects. In addition, we use lightweight neural network MobileNetv3 to improve YOLOv7, so that the algorithm maintains excellent small object detection performance while significantly increasing the detection speed. Moreover, the integrated model optimisation uses only the object detection loss functions, which allows ATISP to perform image enhancement just according to the object detection needs, improving small object detection effect and shortening the inference time of ATISP. In extensive experiments, compared with 9 state-of-the-art object detection algorithms, our algorithm has the best small-scale insulator faults detection precision (mAP:75.38
$\%$
) in our DIFE, best small object detection precision (mAP:56.31
$\%$
) in public dataset Exdark, and faster detection speed (FPS:98.81 and 97.53), which prove our method can achieve fast and accurate low-illuminance insulators detection.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.