Francisco Portillo, Manuel Soler-Ortiz, Cristina Sanchez-Cruzado, Rosa M. Garcia, Nuria Novas
{"title":"翻转学习和数字实验室对电子学基础课程的影响","authors":"Francisco Portillo, Manuel Soler-Ortiz, Cristina Sanchez-Cruzado, Rosa M. Garcia, Nuria Novas","doi":"10.1002/cae.22810","DOIUrl":null,"url":null,"abstract":"<p>Advancements in electronics and the rapid evolution of technology necessitate that higher education institutions continuously adapt their curricula to accommodate new teaching methodologies and emergent tools. This paper examines the impact of integrating flipped learning and digital laboratories into practical sessions of a Basic Electronics course by analyzing 5 years of data. Using an action research methodology, the research was conducted through three phases: traditional in-person teaching, fully online instruction during the COVID-19 pandemic, and a hybrid model combining flipped classrooms, digital laboratories, and in-person sessions. The findings reveal that the hybrid model, blending digital and traditional methods, significantly enhanced student performance, particularly in practical tasks. Furthermore, digital laboratories provide students with a risk-free environment to simulate real-world electronic scenarios, fostering deeper cognitive engagement and reducing the cognitive load during in-person sessions. The flipped classroom structure encouraged active learning and peer collaboration, which led to greater student motivation, lower absenteeism, and improved learning outcomes. Additionally, students demonstrated a marked increase in their ability to apply theoretical knowledge to practical problems, highlighting the effectiveness of this approach in bridging the gap between theory and practice. This model enhances cognitive and motivational learning dimensions, providing a balanced, effective approach to modern engineering education. The results can potentially contribute to the understanding of effective pedagogical strategies in adapting engineering education to meet the challenges of the digital age.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"33 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.22810","citationCount":"0","resultStr":"{\"title\":\"The Impact of Flipped Learning and Digital Laboratory in Basic Electronics Coursework\",\"authors\":\"Francisco Portillo, Manuel Soler-Ortiz, Cristina Sanchez-Cruzado, Rosa M. Garcia, Nuria Novas\",\"doi\":\"10.1002/cae.22810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advancements in electronics and the rapid evolution of technology necessitate that higher education institutions continuously adapt their curricula to accommodate new teaching methodologies and emergent tools. This paper examines the impact of integrating flipped learning and digital laboratories into practical sessions of a Basic Electronics course by analyzing 5 years of data. Using an action research methodology, the research was conducted through three phases: traditional in-person teaching, fully online instruction during the COVID-19 pandemic, and a hybrid model combining flipped classrooms, digital laboratories, and in-person sessions. The findings reveal that the hybrid model, blending digital and traditional methods, significantly enhanced student performance, particularly in practical tasks. Furthermore, digital laboratories provide students with a risk-free environment to simulate real-world electronic scenarios, fostering deeper cognitive engagement and reducing the cognitive load during in-person sessions. The flipped classroom structure encouraged active learning and peer collaboration, which led to greater student motivation, lower absenteeism, and improved learning outcomes. Additionally, students demonstrated a marked increase in their ability to apply theoretical knowledge to practical problems, highlighting the effectiveness of this approach in bridging the gap between theory and practice. This model enhances cognitive and motivational learning dimensions, providing a balanced, effective approach to modern engineering education. The results can potentially contribute to the understanding of effective pedagogical strategies in adapting engineering education to meet the challenges of the digital age.</p>\",\"PeriodicalId\":50643,\"journal\":{\"name\":\"Computer Applications in Engineering Education\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.22810\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Applications in Engineering Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cae.22810\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Applications in Engineering Education","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.22810","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Impact of Flipped Learning and Digital Laboratory in Basic Electronics Coursework
Advancements in electronics and the rapid evolution of technology necessitate that higher education institutions continuously adapt their curricula to accommodate new teaching methodologies and emergent tools. This paper examines the impact of integrating flipped learning and digital laboratories into practical sessions of a Basic Electronics course by analyzing 5 years of data. Using an action research methodology, the research was conducted through three phases: traditional in-person teaching, fully online instruction during the COVID-19 pandemic, and a hybrid model combining flipped classrooms, digital laboratories, and in-person sessions. The findings reveal that the hybrid model, blending digital and traditional methods, significantly enhanced student performance, particularly in practical tasks. Furthermore, digital laboratories provide students with a risk-free environment to simulate real-world electronic scenarios, fostering deeper cognitive engagement and reducing the cognitive load during in-person sessions. The flipped classroom structure encouraged active learning and peer collaboration, which led to greater student motivation, lower absenteeism, and improved learning outcomes. Additionally, students demonstrated a marked increase in their ability to apply theoretical knowledge to practical problems, highlighting the effectiveness of this approach in bridging the gap between theory and practice. This model enhances cognitive and motivational learning dimensions, providing a balanced, effective approach to modern engineering education. The results can potentially contribute to the understanding of effective pedagogical strategies in adapting engineering education to meet the challenges of the digital age.
期刊介绍:
Computer Applications in Engineering Education provides a forum for publishing peer-reviewed timely information on the innovative uses of computers, Internet, and software tools in engineering education. Besides new courses and software tools, the CAE journal covers areas that support the integration of technology-based modules in the engineering curriculum and promotes discussion of the assessment and dissemination issues associated with these new implementation methods.