{"title":"综述聚乳酸的合成、特性和各种应用,重点是食品包装应用。","authors":"C S Reshma, S Remya, J Bindu","doi":"10.1016/j.ijbiomac.2024.137905","DOIUrl":null,"url":null,"abstract":"<p><p>Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137905"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of exploring the synthesis, properties, and diverse applications of poly lactic acid with a focus on food packaging application.\",\"authors\":\"C S Reshma, S Remya, J Bindu\",\"doi\":\"10.1016/j.ijbiomac.2024.137905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137905\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137905\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137905","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A review of exploring the synthesis, properties, and diverse applications of poly lactic acid with a focus on food packaging application.
Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.