了解表面和边缘功能化对石墨烯和氧化石墨烯机械特性的影响。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2024-11-22 DOI:10.1002/cphc.202400919
Bharat Bhushan Sharma, Anjana Kedare, Girish Muralidharan, Ananth Govind Rajan
{"title":"了解表面和边缘功能化对石墨烯和氧化石墨烯机械特性的影响。","authors":"Bharat Bhushan Sharma, Anjana Kedare, Girish Muralidharan, Ananth Govind Rajan","doi":"10.1002/cphc.202400919","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene oxide (GO) is a widely used 2D material employed in various applications due to its tunable properties. Understanding its mechanical properties is crucial to develop polymeric nanocomposites. We employ reactive molecular dynamics simulations to understand the effects of surface and edge functionalization of carbon atoms on the mechanical strength and fracture morphology of graphene and GO. We vary the extent of functionalization of hydroxyl and epoxy groups between 0.1%-70% on the GO surface and find that the tensile strength decreases with increasing functionalization. Nevertheless, there exists an optimal level of surface functionalization of 15-20% where the tensile strength of pristine graphene is retained. Additionally, we find that functionalization alters the fracture morphology from brittle to mild ductile, which is desirable in engineering applications. We also show that the edge functionalization of finite-size graphene nanosheets transfers the failure nucleation sites from the edges to the bulk, although the tensile strength decreases due to increased buckling. Interestingly, the decrement in tensile strength due to surface functionalization is larger as compared to edge functionalization. Overall, this work highlights the possibility of customizing GO's mechanical properties through targeted surface and edge functionalization, paving the way for its controlled application in nanocomposites.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400919"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Effects of Surface and Edge Functionalization on the Mechanical Properties of Graphene and Graphene Oxide.\",\"authors\":\"Bharat Bhushan Sharma, Anjana Kedare, Girish Muralidharan, Ananth Govind Rajan\",\"doi\":\"10.1002/cphc.202400919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graphene oxide (GO) is a widely used 2D material employed in various applications due to its tunable properties. Understanding its mechanical properties is crucial to develop polymeric nanocomposites. We employ reactive molecular dynamics simulations to understand the effects of surface and edge functionalization of carbon atoms on the mechanical strength and fracture morphology of graphene and GO. We vary the extent of functionalization of hydroxyl and epoxy groups between 0.1%-70% on the GO surface and find that the tensile strength decreases with increasing functionalization. Nevertheless, there exists an optimal level of surface functionalization of 15-20% where the tensile strength of pristine graphene is retained. Additionally, we find that functionalization alters the fracture morphology from brittle to mild ductile, which is desirable in engineering applications. We also show that the edge functionalization of finite-size graphene nanosheets transfers the failure nucleation sites from the edges to the bulk, although the tensile strength decreases due to increased buckling. Interestingly, the decrement in tensile strength due to surface functionalization is larger as compared to edge functionalization. Overall, this work highlights the possibility of customizing GO's mechanical properties through targeted surface and edge functionalization, paving the way for its controlled application in nanocomposites.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400919\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400919\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400919","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化石墨烯(GO)是一种广泛应用的二维材料,因其具有可调整的特性而被广泛应用于各种领域。了解其机械性能对于开发聚合物纳米复合材料至关重要。我们采用反应分子动力学模拟来了解碳原子表面和边缘功能化对石墨烯和 GO 的机械强度和断裂形态的影响。我们将 GO 表面羟基和环氧基的官能化程度控制在 0.1% 到 70% 之间,结果发现拉伸强度会随着官能化程度的增加而降低。然而,在 15% 到 20% 的最佳表面官能化水平上,原始石墨烯的拉伸强度仍能保持不变。此外,我们还发现功能化改变了断裂形态,从脆性变为温和的韧性,这在工程应用中是非常理想的。我们还发现,有限尺寸石墨烯纳米片的边缘功能化会将失效成核点从边缘转移到主体,但由于屈曲增加,抗拉强度会降低。有趣的是,与边缘功能化相比,表面功能化导致的抗拉强度下降幅度更大。总之,这项工作强调了通过有针对性的表面和边缘功能化来定制 GO 机械性能的可能性,为其在纳米复合材料中的可控应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the Effects of Surface and Edge Functionalization on the Mechanical Properties of Graphene and Graphene Oxide.

Graphene oxide (GO) is a widely used 2D material employed in various applications due to its tunable properties. Understanding its mechanical properties is crucial to develop polymeric nanocomposites. We employ reactive molecular dynamics simulations to understand the effects of surface and edge functionalization of carbon atoms on the mechanical strength and fracture morphology of graphene and GO. We vary the extent of functionalization of hydroxyl and epoxy groups between 0.1%-70% on the GO surface and find that the tensile strength decreases with increasing functionalization. Nevertheless, there exists an optimal level of surface functionalization of 15-20% where the tensile strength of pristine graphene is retained. Additionally, we find that functionalization alters the fracture morphology from brittle to mild ductile, which is desirable in engineering applications. We also show that the edge functionalization of finite-size graphene nanosheets transfers the failure nucleation sites from the edges to the bulk, although the tensile strength decreases due to increased buckling. Interestingly, the decrement in tensile strength due to surface functionalization is larger as compared to edge functionalization. Overall, this work highlights the possibility of customizing GO's mechanical properties through targeted surface and edge functionalization, paving the way for its controlled application in nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Understanding Ion-Specific "Hofmeister" Effects in Enzyme Catalysis Through Using RNase A as a Paradigm Model. Understanding the Effects of Surface and Edge Functionalization on the Mechanical Properties of Graphene and Graphene Oxide. Absorption and Excited-State Coherences of Cryogenically Cold Retinal Protonated Schiff Base in Vacuo. Stable π​ Radical BDPA: Adsorption on Cu(100) and Survival of Spin. What is the exchange-repulsion energy? Insight by partitioning into physically meaningful contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1