{"title":"工程纳米粒子对淡水鱼类的环境毒性评估。","authors":"Vaishnavi Rana, Unnati Dani, Alkesh Shah","doi":"10.1080/17435390.2024.2423653","DOIUrl":null,"url":null,"abstract":"<p><p>The present study rigorously examined the toxicological effects of nanoparticles (NPs), specifically nickel (Ni) and chromium oxide (Cr<sub>3</sub>O<sub>4</sub>) NPs, synthesized under controlled conditions and characterized. To evaluate their potential environmental impact exposed the freshwater fish <i>Labeo rohita</i> (<i>L. rohita</i>) to environmentally relevant concentrations of both NPs within a controlled laboratory conditions. Vital organs, including gills and liver were subjected to histopathological analysis, revealing profound alterations in tissue architecture that were distinctly correlated with pathological damage. The lesions exhibited moderate to severe changes that are further correlated with the semi-quantitative mean alteration value (MAV). Furthermore, conducted a quantitative assessment of tissue-specific morphological changes. Notably, there was a significant reduction in critical hematological changes, including red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin concentrations and other parameters. All of which exhibited significant fluctuations in relation to increasing NPs concentrations. These findings underscore the critical necessity for continued investigation into the ecological risks associated with these nanoparticles.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"1-16"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental toxicity assessment of engineered nanoparticles manifest histo-hemato alterations to fresh water fish.\",\"authors\":\"Vaishnavi Rana, Unnati Dani, Alkesh Shah\",\"doi\":\"10.1080/17435390.2024.2423653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study rigorously examined the toxicological effects of nanoparticles (NPs), specifically nickel (Ni) and chromium oxide (Cr<sub>3</sub>O<sub>4</sub>) NPs, synthesized under controlled conditions and characterized. To evaluate their potential environmental impact exposed the freshwater fish <i>Labeo rohita</i> (<i>L. rohita</i>) to environmentally relevant concentrations of both NPs within a controlled laboratory conditions. Vital organs, including gills and liver were subjected to histopathological analysis, revealing profound alterations in tissue architecture that were distinctly correlated with pathological damage. The lesions exhibited moderate to severe changes that are further correlated with the semi-quantitative mean alteration value (MAV). Furthermore, conducted a quantitative assessment of tissue-specific morphological changes. Notably, there was a significant reduction in critical hematological changes, including red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin concentrations and other parameters. All of which exhibited significant fluctuations in relation to increasing NPs concentrations. These findings underscore the critical necessity for continued investigation into the ecological risks associated with these nanoparticles.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2024.2423653\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2423653","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Environmental toxicity assessment of engineered nanoparticles manifest histo-hemato alterations to fresh water fish.
The present study rigorously examined the toxicological effects of nanoparticles (NPs), specifically nickel (Ni) and chromium oxide (Cr3O4) NPs, synthesized under controlled conditions and characterized. To evaluate their potential environmental impact exposed the freshwater fish Labeo rohita (L. rohita) to environmentally relevant concentrations of both NPs within a controlled laboratory conditions. Vital organs, including gills and liver were subjected to histopathological analysis, revealing profound alterations in tissue architecture that were distinctly correlated with pathological damage. The lesions exhibited moderate to severe changes that are further correlated with the semi-quantitative mean alteration value (MAV). Furthermore, conducted a quantitative assessment of tissue-specific morphological changes. Notably, there was a significant reduction in critical hematological changes, including red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin concentrations and other parameters. All of which exhibited significant fluctuations in relation to increasing NPs concentrations. These findings underscore the critical necessity for continued investigation into the ecological risks associated with these nanoparticles.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.