{"title":"交通状况和道路几何对高速公路交通事故严重性的非线性影响:机器学习方法","authors":"Yao Liang, Hongxia Yuan, Zhenwu Wang, Zhongjin Wan, Tiantian Liu, Bing Wu, Shijie Chen, Xiaobo Tang","doi":"10.1371/journal.pone.0314133","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to explore nonlinear and threshold effects of traffic statuses and road geometries, as well as their interactions, on traffic accident severity. In contrast to earlier research that primarily defined road alignment qualitatively as straight or curved, flat or slope, this study focused on the design elements of road geometry at accident locations. Additionally, this study considers the traffic conditions on the day of the accident, rather than the average annual traffic data as previous studies have done. To achieve this, we collected road design documents, traffic-related data, and 2023 accident data from the Suining section of the G42 Expressway in China. Using this dataset, we tested the classification performance of four machine learning models, including eXtreme Gradient Boosting, Gradient Boosted Decision Tree, Random Forest, and Light Gradient Boosting Machine. The optimal Random Forest model was employed to identify the key factors infulencing traffic accident severity, and the partial dependence plot was introduced to visualize the relationship between severity and various single and two-factor variables. The results indicate that the percentage of trucks, daily traffic volume, slope length, road grade, curvature, and curve length all exhibit significant nonlinear and threshold effects on accident severity. This reveals sepecific road and traffic features associated with varying levels of accident severity along the highway section examined in this study. The findings of this study will provide data-driven recommendations for highway design and daily safety management to reduce the severity of traffic accidents.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 11","pages":"e0314133"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonlinear effects of traffic statuses and road geometries on highway traffic accident severity: A machine learning approach.\",\"authors\":\"Yao Liang, Hongxia Yuan, Zhenwu Wang, Zhongjin Wan, Tiantian Liu, Bing Wu, Shijie Chen, Xiaobo Tang\",\"doi\":\"10.1371/journal.pone.0314133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study is to explore nonlinear and threshold effects of traffic statuses and road geometries, as well as their interactions, on traffic accident severity. In contrast to earlier research that primarily defined road alignment qualitatively as straight or curved, flat or slope, this study focused on the design elements of road geometry at accident locations. Additionally, this study considers the traffic conditions on the day of the accident, rather than the average annual traffic data as previous studies have done. To achieve this, we collected road design documents, traffic-related data, and 2023 accident data from the Suining section of the G42 Expressway in China. Using this dataset, we tested the classification performance of four machine learning models, including eXtreme Gradient Boosting, Gradient Boosted Decision Tree, Random Forest, and Light Gradient Boosting Machine. The optimal Random Forest model was employed to identify the key factors infulencing traffic accident severity, and the partial dependence plot was introduced to visualize the relationship between severity and various single and two-factor variables. The results indicate that the percentage of trucks, daily traffic volume, slope length, road grade, curvature, and curve length all exhibit significant nonlinear and threshold effects on accident severity. This reveals sepecific road and traffic features associated with varying levels of accident severity along the highway section examined in this study. The findings of this study will provide data-driven recommendations for highway design and daily safety management to reduce the severity of traffic accidents.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"19 11\",\"pages\":\"e0314133\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0314133\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0314133","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Nonlinear effects of traffic statuses and road geometries on highway traffic accident severity: A machine learning approach.
The purpose of this study is to explore nonlinear and threshold effects of traffic statuses and road geometries, as well as their interactions, on traffic accident severity. In contrast to earlier research that primarily defined road alignment qualitatively as straight or curved, flat or slope, this study focused on the design elements of road geometry at accident locations. Additionally, this study considers the traffic conditions on the day of the accident, rather than the average annual traffic data as previous studies have done. To achieve this, we collected road design documents, traffic-related data, and 2023 accident data from the Suining section of the G42 Expressway in China. Using this dataset, we tested the classification performance of four machine learning models, including eXtreme Gradient Boosting, Gradient Boosted Decision Tree, Random Forest, and Light Gradient Boosting Machine. The optimal Random Forest model was employed to identify the key factors infulencing traffic accident severity, and the partial dependence plot was introduced to visualize the relationship between severity and various single and two-factor variables. The results indicate that the percentage of trucks, daily traffic volume, slope length, road grade, curvature, and curve length all exhibit significant nonlinear and threshold effects on accident severity. This reveals sepecific road and traffic features associated with varying levels of accident severity along the highway section examined in this study. The findings of this study will provide data-driven recommendations for highway design and daily safety management to reduce the severity of traffic accidents.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage