Varinder Singh, Vahid Shaghaghi, Tanmoy Pandit, Cameron Beetar, Giuliano Benenti, Dario Rosa
{"title":"非对称量子奥托发动机:摩擦对性能界限和运行模式的影响","authors":"Varinder Singh, Vahid Shaghaghi, Tanmoy Pandit, Cameron Beetar, Giuliano Benenti, Dario Rosa","doi":"10.1140/epjp/s13360-024-05798-5","DOIUrl":null,"url":null,"abstract":"<div><p>We present a detailed study of an asymmetrically driven quantum Otto engine with a time-dependent harmonic oscillator as its working medium. We obtain analytic expressions for the upper bounds on the efficiency of the engine for two different driving schemes having asymmetry in the expansion and compression work strokes. We show that the Otto cycle under consideration cannot operate as a heat engine in the low-temperature regime. Then, we show that the friction in the expansion stroke is significantly more detrimental to the performance of the engine as compared to the friction in the compression stroke. Further, by comparing the performance of the engine with sudden expansion, sudden compression, and both sudden strokes, we uncover a pattern of connections between different operational points. Finally, we analytically characterize the complete phase diagram of the Otto cycle for both driving schemes and highlight the different operational modes of the cycle as a heat engine, refrigerator, accelerator, and heater.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymmetric quantum Otto engine: frictional effects on performance bounds and operational modes\",\"authors\":\"Varinder Singh, Vahid Shaghaghi, Tanmoy Pandit, Cameron Beetar, Giuliano Benenti, Dario Rosa\",\"doi\":\"10.1140/epjp/s13360-024-05798-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a detailed study of an asymmetrically driven quantum Otto engine with a time-dependent harmonic oscillator as its working medium. We obtain analytic expressions for the upper bounds on the efficiency of the engine for two different driving schemes having asymmetry in the expansion and compression work strokes. We show that the Otto cycle under consideration cannot operate as a heat engine in the low-temperature regime. Then, we show that the friction in the expansion stroke is significantly more detrimental to the performance of the engine as compared to the friction in the compression stroke. Further, by comparing the performance of the engine with sudden expansion, sudden compression, and both sudden strokes, we uncover a pattern of connections between different operational points. Finally, we analytically characterize the complete phase diagram of the Otto cycle for both driving schemes and highlight the different operational modes of the cycle as a heat engine, refrigerator, accelerator, and heater.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"139 11\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-024-05798-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05798-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The asymmetric quantum Otto engine: frictional effects on performance bounds and operational modes
We present a detailed study of an asymmetrically driven quantum Otto engine with a time-dependent harmonic oscillator as its working medium. We obtain analytic expressions for the upper bounds on the efficiency of the engine for two different driving schemes having asymmetry in the expansion and compression work strokes. We show that the Otto cycle under consideration cannot operate as a heat engine in the low-temperature regime. Then, we show that the friction in the expansion stroke is significantly more detrimental to the performance of the engine as compared to the friction in the compression stroke. Further, by comparing the performance of the engine with sudden expansion, sudden compression, and both sudden strokes, we uncover a pattern of connections between different operational points. Finally, we analytically characterize the complete phase diagram of the Otto cycle for both driving schemes and highlight the different operational modes of the cycle as a heat engine, refrigerator, accelerator, and heater.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.