Hua Cheng, Liyan Bai, Xi Zhang, Wenfei Chen, Simin He, Yunqi Liu, Juan Wang, Shaoli Song
{"title":"68Ga 标记的 Olmutinib:新型 PET 表皮生长因子受体探针的设计、合成和评估。","authors":"Hua Cheng, Liyan Bai, Xi Zhang, Wenfei Chen, Simin He, Yunqi Liu, Juan Wang, Shaoli Song","doi":"10.1016/j.bioorg.2024.107987","DOIUrl":null,"url":null,"abstract":"<p><p>Radiolabeled tyrosine kinase inhibitors (TKIs) offer a promising approach for molecular imaging of EGFR-positive cancers. Despite the development of various EGFR small-molecule probes, none of the <sup>68</sup>Ga-labeled small-molecule probes based on the chelator DOTA have shown tumor-specific uptake. To address this challenge, we selected Olmutinib, a third-generation EGFR covalent inhibitor, as a PET imaging tracer for EGFR-positive tumors. We synthesized the precursor DOTA-Olmutinib through a five-step process and subsequently radiolabeled it with <sup>68</sup>Ga to prepare <sup>68</sup>Ga-DOTA-Olmutinib. <sup>68</sup>Ga-DOTA-Olmutinib displayed moderate lipophilicity (log P = 0.85) and exhibited high stability in vitro and in vivo. Western blot analysis was used to detect the level of EGFR in multiple tumor cells. In cell uptake experiments, <sup>68</sup>Ga-DOTA-Olmutinib exhibited enhanced uptake specifically in tumor cells with a higher level of EGFR supporting it as an EGFR-specific tracer. Additionally, PET/CT imaging with <sup>68</sup>Ga-DOTA-Olmutinib showed significant tumor uptake at 60 min with 4 % ID/g post-injection, marking a breakthrough, though the uptake is not yet ideal. Overall, our results suggest that <sup>68</sup>Ga-labeled Olmutinib holds promise as a potential PET tracer for detecting EGFR-positive cancers.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107987"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<sup>68</sup>Ga labeled Olmutinib: Design, synthesis, and evaluation of a novel PET EGFR probe.\",\"authors\":\"Hua Cheng, Liyan Bai, Xi Zhang, Wenfei Chen, Simin He, Yunqi Liu, Juan Wang, Shaoli Song\",\"doi\":\"10.1016/j.bioorg.2024.107987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiolabeled tyrosine kinase inhibitors (TKIs) offer a promising approach for molecular imaging of EGFR-positive cancers. Despite the development of various EGFR small-molecule probes, none of the <sup>68</sup>Ga-labeled small-molecule probes based on the chelator DOTA have shown tumor-specific uptake. To address this challenge, we selected Olmutinib, a third-generation EGFR covalent inhibitor, as a PET imaging tracer for EGFR-positive tumors. We synthesized the precursor DOTA-Olmutinib through a five-step process and subsequently radiolabeled it with <sup>68</sup>Ga to prepare <sup>68</sup>Ga-DOTA-Olmutinib. <sup>68</sup>Ga-DOTA-Olmutinib displayed moderate lipophilicity (log P = 0.85) and exhibited high stability in vitro and in vivo. Western blot analysis was used to detect the level of EGFR in multiple tumor cells. In cell uptake experiments, <sup>68</sup>Ga-DOTA-Olmutinib exhibited enhanced uptake specifically in tumor cells with a higher level of EGFR supporting it as an EGFR-specific tracer. Additionally, PET/CT imaging with <sup>68</sup>Ga-DOTA-Olmutinib showed significant tumor uptake at 60 min with 4 % ID/g post-injection, marking a breakthrough, though the uptake is not yet ideal. Overall, our results suggest that <sup>68</sup>Ga-labeled Olmutinib holds promise as a potential PET tracer for detecting EGFR-positive cancers.</p>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"153 \",\"pages\":\"107987\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bioorg.2024.107987\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107987","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
68Ga labeled Olmutinib: Design, synthesis, and evaluation of a novel PET EGFR probe.
Radiolabeled tyrosine kinase inhibitors (TKIs) offer a promising approach for molecular imaging of EGFR-positive cancers. Despite the development of various EGFR small-molecule probes, none of the 68Ga-labeled small-molecule probes based on the chelator DOTA have shown tumor-specific uptake. To address this challenge, we selected Olmutinib, a third-generation EGFR covalent inhibitor, as a PET imaging tracer for EGFR-positive tumors. We synthesized the precursor DOTA-Olmutinib through a five-step process and subsequently radiolabeled it with 68Ga to prepare 68Ga-DOTA-Olmutinib. 68Ga-DOTA-Olmutinib displayed moderate lipophilicity (log P = 0.85) and exhibited high stability in vitro and in vivo. Western blot analysis was used to detect the level of EGFR in multiple tumor cells. In cell uptake experiments, 68Ga-DOTA-Olmutinib exhibited enhanced uptake specifically in tumor cells with a higher level of EGFR supporting it as an EGFR-specific tracer. Additionally, PET/CT imaging with 68Ga-DOTA-Olmutinib showed significant tumor uptake at 60 min with 4 % ID/g post-injection, marking a breakthrough, though the uptake is not yet ideal. Overall, our results suggest that 68Ga-labeled Olmutinib holds promise as a potential PET tracer for detecting EGFR-positive cancers.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.