{"title":"bHLH19 和 bHLH20 抑制拟南芥中茉莉酸介导的植物对昆虫食草动物的防御。","authors":"Shihai Pang, Jiaqi Zhai, Junqiao Song, Deqing Rong, Yihan Hong, Yue Qiu, Jingzhi Ma, Tiancong Qi, Huang Huang, Susheng Song","doi":"10.1111/tpj.17132","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plants are attacked by various insect herbivores. Upon attack-triggered biosynthesis of the phytohormone jasmonates (JAs), the JA receptor CORONATINE INSENSITIVE 1 recruits the JA-ZIM domain (JAZ) repressors for ubiquitination, releases the MYC-MYB transcription factor (TF) complexes, and enhances glucosinolates (GSs) biosynthesis to promote defense against insects in Arabidopsis. However, the negative regulation of JA-regulated defense remains largely unclear. Here, we found that Arabidopsis IVa bHLH TFs bHLH19 and bHLH20 interacted with JAZs. The <i>bhlh19/20</i> mutations enhanced defense against the insects <i>Spodoptera frugiperda</i> and <i>S. exigua</i>, while their overexpression inhibited defense. bHLH19/20 repressed defense via at least two layers of regulation: first, bHLH19/20 interacted with the members MYC2/3/4/5 and MYB34/51/122 of MYC-MYB complexes, and inhibited the interaction/transcription activity of MYC2-MYB34; second, bHLH19/20 activated the RNA level of <i>nitrile-specifier protein 1</i>, which converts GSs into the less toxic nitriles. <i>bhlh19/20</i> exhibited no penalty in JA-regulated growth inhibition. Collectively, our findings reveal the molecular mechanism for negatively regulating JA-mediated defense against insects in Arabidopsis without growth penalty by the pair of bHLH19/20 TFs.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"120 6","pages":"2623-2638"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"bHLH19 and bHLH20 repress jasmonate-mediated plant defense against insect herbivores in Arabidopsis\",\"authors\":\"Shihai Pang, Jiaqi Zhai, Junqiao Song, Deqing Rong, Yihan Hong, Yue Qiu, Jingzhi Ma, Tiancong Qi, Huang Huang, Susheng Song\",\"doi\":\"10.1111/tpj.17132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Plants are attacked by various insect herbivores. Upon attack-triggered biosynthesis of the phytohormone jasmonates (JAs), the JA receptor CORONATINE INSENSITIVE 1 recruits the JA-ZIM domain (JAZ) repressors for ubiquitination, releases the MYC-MYB transcription factor (TF) complexes, and enhances glucosinolates (GSs) biosynthesis to promote defense against insects in Arabidopsis. However, the negative regulation of JA-regulated defense remains largely unclear. Here, we found that Arabidopsis IVa bHLH TFs bHLH19 and bHLH20 interacted with JAZs. The <i>bhlh19/20</i> mutations enhanced defense against the insects <i>Spodoptera frugiperda</i> and <i>S. exigua</i>, while their overexpression inhibited defense. bHLH19/20 repressed defense via at least two layers of regulation: first, bHLH19/20 interacted with the members MYC2/3/4/5 and MYB34/51/122 of MYC-MYB complexes, and inhibited the interaction/transcription activity of MYC2-MYB34; second, bHLH19/20 activated the RNA level of <i>nitrile-specifier protein 1</i>, which converts GSs into the less toxic nitriles. <i>bhlh19/20</i> exhibited no penalty in JA-regulated growth inhibition. Collectively, our findings reveal the molecular mechanism for negatively regulating JA-mediated defense against insects in Arabidopsis without growth penalty by the pair of bHLH19/20 TFs.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"120 6\",\"pages\":\"2623-2638\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17132\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17132","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
bHLH19 and bHLH20 repress jasmonate-mediated plant defense against insect herbivores in Arabidopsis
Plants are attacked by various insect herbivores. Upon attack-triggered biosynthesis of the phytohormone jasmonates (JAs), the JA receptor CORONATINE INSENSITIVE 1 recruits the JA-ZIM domain (JAZ) repressors for ubiquitination, releases the MYC-MYB transcription factor (TF) complexes, and enhances glucosinolates (GSs) biosynthesis to promote defense against insects in Arabidopsis. However, the negative regulation of JA-regulated defense remains largely unclear. Here, we found that Arabidopsis IVa bHLH TFs bHLH19 and bHLH20 interacted with JAZs. The bhlh19/20 mutations enhanced defense against the insects Spodoptera frugiperda and S. exigua, while their overexpression inhibited defense. bHLH19/20 repressed defense via at least two layers of regulation: first, bHLH19/20 interacted with the members MYC2/3/4/5 and MYB34/51/122 of MYC-MYB complexes, and inhibited the interaction/transcription activity of MYC2-MYB34; second, bHLH19/20 activated the RNA level of nitrile-specifier protein 1, which converts GSs into the less toxic nitriles. bhlh19/20 exhibited no penalty in JA-regulated growth inhibition. Collectively, our findings reveal the molecular mechanism for negatively regulating JA-mediated defense against insects in Arabidopsis without growth penalty by the pair of bHLH19/20 TFs.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.