{"title":"纤维密度和基质硬度对 A549 肿瘤多细胞迁移的双重影响","authors":"Bo-Jiang Lin , Hiromichi Fujie , Masashi Yamazaki , Naoya Sakamoto","doi":"10.1016/j.bbrc.2024.151018","DOIUrl":null,"url":null,"abstract":"<div><div>The tumor microenvironment features dynamic biomechanical interactions between extracellular matrix physics and tumor progression. Tumor growth compresses the supportive matrix, and the stiffness-gradient guides tumor invasion. From the mechanical perspective, the complexity of the matrix topology involving durotaxis-driven metastasis remains lacking in a comprehensive description. In this study, A549 adenocarcinoma spheroids were exposed to a stiffness-and fiber-adjusted collagen matrix to examine the influence of collective motility. Centrifugated compression on the collagen constructs was adopted to mimic the matrix deformation in response to solid tumor development. Centrifugated compression physically stiffened and condensed collagen constructs simultaneously. Cultured with A549 spheroids for 7 days, compressed collagen constructs disadvantaged spheroid expansion without the effect of tumor proliferation potency but promoted matrix metalloproteinase activity corresponding to softened rigidity. Results suggested that the fibrous structure may counterbalance the matrix stiffness-induced motility.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"741 ","pages":"Article 151018"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dual effect of fiber density and matrix stiffness on A549 tumor multicellular migration\",\"authors\":\"Bo-Jiang Lin , Hiromichi Fujie , Masashi Yamazaki , Naoya Sakamoto\",\"doi\":\"10.1016/j.bbrc.2024.151018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tumor microenvironment features dynamic biomechanical interactions between extracellular matrix physics and tumor progression. Tumor growth compresses the supportive matrix, and the stiffness-gradient guides tumor invasion. From the mechanical perspective, the complexity of the matrix topology involving durotaxis-driven metastasis remains lacking in a comprehensive description. In this study, A549 adenocarcinoma spheroids were exposed to a stiffness-and fiber-adjusted collagen matrix to examine the influence of collective motility. Centrifugated compression on the collagen constructs was adopted to mimic the matrix deformation in response to solid tumor development. Centrifugated compression physically stiffened and condensed collagen constructs simultaneously. Cultured with A549 spheroids for 7 days, compressed collagen constructs disadvantaged spheroid expansion without the effect of tumor proliferation potency but promoted matrix metalloproteinase activity corresponding to softened rigidity. Results suggested that the fibrous structure may counterbalance the matrix stiffness-induced motility.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"741 \",\"pages\":\"Article 151018\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24015547\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24015547","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The dual effect of fiber density and matrix stiffness on A549 tumor multicellular migration
The tumor microenvironment features dynamic biomechanical interactions between extracellular matrix physics and tumor progression. Tumor growth compresses the supportive matrix, and the stiffness-gradient guides tumor invasion. From the mechanical perspective, the complexity of the matrix topology involving durotaxis-driven metastasis remains lacking in a comprehensive description. In this study, A549 adenocarcinoma spheroids were exposed to a stiffness-and fiber-adjusted collagen matrix to examine the influence of collective motility. Centrifugated compression on the collagen constructs was adopted to mimic the matrix deformation in response to solid tumor development. Centrifugated compression physically stiffened and condensed collagen constructs simultaneously. Cultured with A549 spheroids for 7 days, compressed collagen constructs disadvantaged spheroid expansion without the effect of tumor proliferation potency but promoted matrix metalloproteinase activity corresponding to softened rigidity. Results suggested that the fibrous structure may counterbalance the matrix stiffness-induced motility.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics