Jindong Jiang, Wafa Skalli, Ali Siadat, Laurent Gajny
{"title":"生物力学协会 2023 年青年研究员奖:使用无标记运动捕捉力板估算L5-S1在上举/下放任务中的节间负荷。","authors":"Jindong Jiang, Wafa Skalli, Ali Siadat, Laurent Gajny","doi":"10.1016/j.jbiomech.2024.112422","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate estimation of joint load during a lifting/lowering task could provide a better understanding of the pathogenesis and development of musculoskeletal disorders. In particular, the values of the net force and moment at the L5-S1 joint could be an important criterion to identify the unsafe lifting/lowering tasks. In this study, the joint load at L5-S1 was estimated from the motion kinematics acquired using a multi-view markerless motion capture system without force plate. The 3D human pose estimation was first obtained on each frame using deep learning. The kinematic analysis was then performed to calculate the velocity and acceleration information of each segment. Then, the net force and moment at the L5-S1 joint were calculated using inverse dynamics with a top-down approach. This estimate was compared to a reference with a bottom-up approach. It was computed using a marker-based motion capture system combined with force plates and using personalized body segment inertial parameters derived from a 3D model of the human body shape constructed for each subject using biplanar radiographs. The average differences of the estimates for force and moment among all subjects were 14.0 ± 6.9 N and 9.0 ± 2.3 Nm, respectively. Meanwhile, the mean peak value differences of the estimates were 10.8 ± 8.9 N and 11.9 ± 9.5 Nm, respectively. This study then proposed the most rigorous comparison of mechanical loading on the lumbar spine using computer vision. Further work is needed to perform such an estimation under realistic industrial conditions.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"177 ","pages":"112422"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Société de Biomécanique young investigator award 2023: Estimation of intersegmental load at L5-S1 during lifting/lowering tasks using force plate free markerless motion capture.\",\"authors\":\"Jindong Jiang, Wafa Skalli, Ali Siadat, Laurent Gajny\",\"doi\":\"10.1016/j.jbiomech.2024.112422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate estimation of joint load during a lifting/lowering task could provide a better understanding of the pathogenesis and development of musculoskeletal disorders. In particular, the values of the net force and moment at the L5-S1 joint could be an important criterion to identify the unsafe lifting/lowering tasks. In this study, the joint load at L5-S1 was estimated from the motion kinematics acquired using a multi-view markerless motion capture system without force plate. The 3D human pose estimation was first obtained on each frame using deep learning. The kinematic analysis was then performed to calculate the velocity and acceleration information of each segment. Then, the net force and moment at the L5-S1 joint were calculated using inverse dynamics with a top-down approach. This estimate was compared to a reference with a bottom-up approach. It was computed using a marker-based motion capture system combined with force plates and using personalized body segment inertial parameters derived from a 3D model of the human body shape constructed for each subject using biplanar radiographs. The average differences of the estimates for force and moment among all subjects were 14.0 ± 6.9 N and 9.0 ± 2.3 Nm, respectively. Meanwhile, the mean peak value differences of the estimates were 10.8 ± 8.9 N and 11.9 ± 9.5 Nm, respectively. This study then proposed the most rigorous comparison of mechanical loading on the lumbar spine using computer vision. Further work is needed to perform such an estimation under realistic industrial conditions.</p>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"177 \",\"pages\":\"112422\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiomech.2024.112422\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2024.112422","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Société de Biomécanique young investigator award 2023: Estimation of intersegmental load at L5-S1 during lifting/lowering tasks using force plate free markerless motion capture.
Accurate estimation of joint load during a lifting/lowering task could provide a better understanding of the pathogenesis and development of musculoskeletal disorders. In particular, the values of the net force and moment at the L5-S1 joint could be an important criterion to identify the unsafe lifting/lowering tasks. In this study, the joint load at L5-S1 was estimated from the motion kinematics acquired using a multi-view markerless motion capture system without force plate. The 3D human pose estimation was first obtained on each frame using deep learning. The kinematic analysis was then performed to calculate the velocity and acceleration information of each segment. Then, the net force and moment at the L5-S1 joint were calculated using inverse dynamics with a top-down approach. This estimate was compared to a reference with a bottom-up approach. It was computed using a marker-based motion capture system combined with force plates and using personalized body segment inertial parameters derived from a 3D model of the human body shape constructed for each subject using biplanar radiographs. The average differences of the estimates for force and moment among all subjects were 14.0 ± 6.9 N and 9.0 ± 2.3 Nm, respectively. Meanwhile, the mean peak value differences of the estimates were 10.8 ± 8.9 N and 11.9 ± 9.5 Nm, respectively. This study then proposed the most rigorous comparison of mechanical loading on the lumbar spine using computer vision. Further work is needed to perform such an estimation under realistic industrial conditions.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.