Kayley Jaworska , Jessica J. Senior , Anke Brüning-Richardson , Alan M. Smith
{"title":"提高细胞外 CaCl2 的影响:组织工程应用的重要考虑因素","authors":"Kayley Jaworska , Jessica J. Senior , Anke Brüning-Richardson , Alan M. Smith","doi":"10.1016/j.tice.2024.102615","DOIUrl":null,"url":null,"abstract":"<div><div>Polysaccharides such as sodium alginate, pectin and gellan gum are widely used biomaterials, for their ability to easily form hydrogels in the presence of divalent metal ions, such as calcium - a process often cited as a mild crosslinking mechanism. However, when using these materials as substrates for tissue engineering, there is a lack of extensive studies that investigate the impact of elevated calcium concentrations on cell health and behaviour. In this study, we performed an in-depth exploration to understand the potential effects of raising extracellular CaCl<sub>2</sub> on cell viability, proliferation, morphology and migration. We used an established glioblastoma (GBM) cell line (U251), human dermal fibroblasts (HDF), and murine osteoblasts (MC3T3) to assess the consequences of using CaCl<sub>2</sub> in tissue engineered models to help reevaluate biomaterial suitability and enhance standardisation practices in the field of tissue engineering. Our findings revealed that the addition of CaCl<sub>2</sub> induced notable morphological changes in GBM cells when cultured in 3D hydrogels with excess CaCl<sub>2</sub> added, leading to a transition from mesenchymal to amoeboid phenotypes, even at a concentration as low as 8 mM. Furthermore, cell viability was reduced in a concentration-dependent manner across all cell types, and migration was also affected. Despite the widespread use of high CaCl<sub>2</sub> concentrations to facilitate scaffold gelation, our research unveils that there can be significant risks to cell viability, proliferation, morphology, and migration when such practices are not preceded by cell line-specific experimentation and thorough standardization procedures. This highlights the importance of careful consideration and optimisation of CaCl<sub>2</sub> concentration when used as a crosslinking agent for hydrogels intended for use in tissue engineering applications that demand accurate recapitulation of cellular responses and physiological conditions.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"91 ","pages":"Article 102615"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of elevating extracellular CaCl2: Important considerations for tissue engineering applications\",\"authors\":\"Kayley Jaworska , Jessica J. Senior , Anke Brüning-Richardson , Alan M. Smith\",\"doi\":\"10.1016/j.tice.2024.102615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polysaccharides such as sodium alginate, pectin and gellan gum are widely used biomaterials, for their ability to easily form hydrogels in the presence of divalent metal ions, such as calcium - a process often cited as a mild crosslinking mechanism. However, when using these materials as substrates for tissue engineering, there is a lack of extensive studies that investigate the impact of elevated calcium concentrations on cell health and behaviour. In this study, we performed an in-depth exploration to understand the potential effects of raising extracellular CaCl<sub>2</sub> on cell viability, proliferation, morphology and migration. We used an established glioblastoma (GBM) cell line (U251), human dermal fibroblasts (HDF), and murine osteoblasts (MC3T3) to assess the consequences of using CaCl<sub>2</sub> in tissue engineered models to help reevaluate biomaterial suitability and enhance standardisation practices in the field of tissue engineering. Our findings revealed that the addition of CaCl<sub>2</sub> induced notable morphological changes in GBM cells when cultured in 3D hydrogels with excess CaCl<sub>2</sub> added, leading to a transition from mesenchymal to amoeboid phenotypes, even at a concentration as low as 8 mM. Furthermore, cell viability was reduced in a concentration-dependent manner across all cell types, and migration was also affected. Despite the widespread use of high CaCl<sub>2</sub> concentrations to facilitate scaffold gelation, our research unveils that there can be significant risks to cell viability, proliferation, morphology, and migration when such practices are not preceded by cell line-specific experimentation and thorough standardization procedures. This highlights the importance of careful consideration and optimisation of CaCl<sub>2</sub> concentration when used as a crosslinking agent for hydrogels intended for use in tissue engineering applications that demand accurate recapitulation of cellular responses and physiological conditions.</div></div>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"91 \",\"pages\":\"Article 102615\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816624003161\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624003161","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
The effect of elevating extracellular CaCl2: Important considerations for tissue engineering applications
Polysaccharides such as sodium alginate, pectin and gellan gum are widely used biomaterials, for their ability to easily form hydrogels in the presence of divalent metal ions, such as calcium - a process often cited as a mild crosslinking mechanism. However, when using these materials as substrates for tissue engineering, there is a lack of extensive studies that investigate the impact of elevated calcium concentrations on cell health and behaviour. In this study, we performed an in-depth exploration to understand the potential effects of raising extracellular CaCl2 on cell viability, proliferation, morphology and migration. We used an established glioblastoma (GBM) cell line (U251), human dermal fibroblasts (HDF), and murine osteoblasts (MC3T3) to assess the consequences of using CaCl2 in tissue engineered models to help reevaluate biomaterial suitability and enhance standardisation practices in the field of tissue engineering. Our findings revealed that the addition of CaCl2 induced notable morphological changes in GBM cells when cultured in 3D hydrogels with excess CaCl2 added, leading to a transition from mesenchymal to amoeboid phenotypes, even at a concentration as low as 8 mM. Furthermore, cell viability was reduced in a concentration-dependent manner across all cell types, and migration was also affected. Despite the widespread use of high CaCl2 concentrations to facilitate scaffold gelation, our research unveils that there can be significant risks to cell viability, proliferation, morphology, and migration when such practices are not preceded by cell line-specific experimentation and thorough standardization procedures. This highlights the importance of careful consideration and optimisation of CaCl2 concentration when used as a crosslinking agent for hydrogels intended for use in tissue engineering applications that demand accurate recapitulation of cellular responses and physiological conditions.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.